Skip to main content

Advertisement

Log in

CYP1A2 polymorphisms, occupational and environmental exposures and risk of bladder cancer

  • CANCER
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Cytochrome P4501A2 (CYP1A2) is a key enzyme for activation of bladder carcinogens. Polymorphisms in the 5′-noncoding promoter region of CYP1A2 gene [mainly −2467T/delT(rs35694136) and −163C/A(rs762551)], are crucial in modifying CYP1A2 activity in smokers. Within the framework of a hospital-based case/control study, we investigated the relationship between CYP1A2 polymorphisms, occupational/environmental exposures and bladder cancer (BC) risk. The study population included 185 BC cases and 180 non-cancer controls, all Caucasian males. Data were collected on lifetime smoking, coffee drinking, dietary habits and lifetime occupation, with particular reference to exposure to aromatic amines (AAs) and polycyclic aromatic hydrocarbons (PAHs). A case-only design was applied to study the interaction between CYP1A22467T/delT (or −163C/A) and occupational and environmental factors. Multiple logistic regression showed a significantly increased risk among heavy smokers (≥50 packyears; OR 5.6, 95% CI: 2.5–12.5) and heavy coffee drinkers (>5 cups/day; OR 3.1, 95% CI: 1.2–7.9). Exposure to AAs showed a significant trend of BC risk with increasing cumulative exposure (CE) (P = 0.04), with heavy smoking as possible confounder. A decreased risk was noted for large leaf vegetable consumption, with significant trend from <1/month to >3 times/week (P = 0.008). The case-only analysis showed an interaction between −2467T/delT and tobacco smoking >25 packyears (P = 0.04); no interaction was detected between such polymorphisms and coffee consumption, dietary habits and occupational exposure to AAs. No effects were shown with −163C/A genotype as well as no overall effect of CYP1A2 by itself on BC risk. This is the first study suggesting that CYP1A2 −2467T/delT modifies the effect of cigarette smoking on BC risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Landi MT, Sinha R, Lang NP, Kadlubar FF. Chapter 16. Human cytochrome P4501A2. In: Vineis P, Malats N, Lang M, d’Errico A, Caporaso N, Cuzick J, Moffetta P, editors. Metabolic polymorphisms and susceptibility to cancer. Lyon: IARC Scientific Publications, IARC; 1999. 148, p. 173–195.

  2. Bartsch H, Nair U, Risch A, Rojas M, Wikman H, Alexandrov K. Genetic polymorphism of CYP genes, alone or in combination, as a risk modifier of tobacco-related cancers. Cancer Epidemiol Biomarkers Prev. 2000;9:3–28.

    CAS  PubMed  Google Scholar 

  3. Butler MA, Lang NP, Young JF, Caporaso NE, Vineis P, Hayes RB, Teitel CH, Massengill JP, Lawsen MF, Kadlubar FF. Determination of CYP1A2 and NAT2 phenotypes in human populations by analysis of caffeine urinary metabolites. Pharmacogenetics. 1992;2:116–27.

    Article  CAS  PubMed  Google Scholar 

  4. Pavanello S, Simioli P, Lupi S, Gregorio P, Clonfero E. Exposure levels and cytochrome P450 1A2 activity, but not N-acetyltransferase, glutathione S-transferase (GST) M1 and T1, influence urinary mutagen excretion in smokers. Cancer Epidemiol Biomarkers Prev. 2002;11:998–1003.

    CAS  PubMed  Google Scholar 

  5. Sesardic D, Boobis AR, Edwards RJ, Davies DS. A form of cytochrome P450 in man, orthologous to form d in the rat, catalyses the odeethylation of phenacetin and is inducible by cigarette smoking. Br J Clin Pharmacol. 1988;26:363–72.

    CAS  PubMed  Google Scholar 

  6. Chung WG, Kang JH, Park CS, Cho MH, Cha YN. Effect of age and smoking on in vivo CYP1A2, flavin-containing monooxygenase, and xanthine oxidase activities in Koreans: determination by caffeine metabolism. Clin Pharmacol Ther. 2000;67:258–66.

    Article  CAS  PubMed  Google Scholar 

  7. Nordmark A, Lundgren S, Cnattingius S, Rane A. Dietary caffeine as a probe agent for assessment of cytochrome P4501A2 activity in random urine samples. Br J Clin Pharmacol. 1999;47:397–402.

    Article  CAS  PubMed  Google Scholar 

  8. Pavanello S, Pulliero A, Lupi S, Gregorio P, Clonfero E. Influence of the genetic polymorphism in the 5’-noncoding region of the CYP1A2 gene on CYP1A2 phenotype and urinary mutagenicity in smokers. Mutat Res. 2005;587:59–66.

    CAS  PubMed  Google Scholar 

  9. Pavanello S, B’chir F, Pulliero A, Saguem S, Ben Fraj R, El Aziz Hayouni A, Clonfero E, Mastrangelo G. Interaction between CYP1A2-T2467DELT polymorphism and smoking in adenocarcinoma and squamous cell carcinoma of the lung. Lung Cancer. 2007;57:266–72.

    Article  PubMed  Google Scholar 

  10. International Agency for Research on Cancer. World cancer report 2008. In: Boyle P, Levin B, editors. WHO Press, Geneva; 2008.

  11. AIRT Working Group. Italian cancer figures—report 2006: 1. Incidence, mortality and estimates. Epidemiol Prev 2006; 30: 8–101.

    Google Scholar 

  12. Pelucchi C, Bosetti C, Negri E, Malvezzi M, La Vecchia C. Mechanisms of disease: the epidemiology of bladder cancer. Nat Clin Pract Urol. 2006;3:327–40.

    Article  CAS  PubMed  Google Scholar 

  13. Kogevinas M, Trichopoulos D. Urinary bladder cancer. In: Adami HO, Hunter D, Trichopoulos D, editors. Textbook of cancer epidemiology. New York: Oxford University Press; 2002. p. 446–66.

    Google Scholar 

  14. Kamat ALJ, Gu J, Chen M, Dinney CP, Forman MR, Wu X. Dietary intake of vegetables and fruit and the modification effects of GSTM1 and NAT2 genotypes on bladder cancer risk. Cancer Epidemiol Biomarkers Prev. 2009;18:2090–7.

    Article  PubMed  Google Scholar 

  15. Kellen E, Zeegers M, Paulussen A, Van Dongen M, Buntinx F. Fruit consumption reduces the effect of smoking on bladder cancer risk. The Belgian case control study on bladder cancer. Int J Cancer. 2006;118:2572–8.

    Article  CAS  PubMed  Google Scholar 

  16. García-Closas R, García-Closas M, Kogevinas M, Malats N, Silverman D, Serra C, Tardón A, Carrato A, Castaño-Vinyals G, Dosemeci M, Moore L, Rothman N, et al. Food, nutrient and heterocyclic amine intake and the risk of bladder cancer. Eur J Cancer. 2007;43:1731–40.

    Article  PubMed  Google Scholar 

  17. Riboli E, Norat T. Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk. Am J Clin Nutr. 2003;78:559–69.

    Google Scholar 

  18. Büchner FL, Bueno-de-Mesquita HB, Ros MM, Kampman E, Egevad L, Overvad K, Raaschou-Nielsn O, Tiønneland A, Roswall N, Clavel-Chapelon F, Boutron-Ruault MC, Touillaud M, Chang-Claude J, Kaaks R, Boeing H, Weikert S, Trichopoulou A, Lagiou P, Trichopoulos D, Palli D, Sieri S, Vineis P, Tumino R, Panico S, Vrieling A, Peeters PH, van Gils CH, Luund E, Gram IT, Engeset D, Martinez C, Gonzalez CA, Larrañaga N, Ardanaz E, Navarro C, Rodriguez L, Manjer J, Ehrnström RA, Hallmans G, Ljungberg B, Allen NE, Roddam AVV, Bingham S, Khaw KT, Silmani N, Boffetta P, Jenab M, Mouw T, Michaud DS, Kiemeney LA, Riboli E. Consumption of vegetables and fruit and the risk of bladder cancer in the European prospective investigation into cancer and nutrition. Int J Cancer. 2009;125:2643–51.

    Article  PubMed  Google Scholar 

  19. Larsson SC, Andersson SO, Johansson JE, Wolk A. Fruit and vegetable consumption and risk of bladder cancer: a prospective cohort study. Cancer Epidemiol Biomarkers Prev. 2008;17:2519–22.

    Article  PubMed  Google Scholar 

  20. International Agency for Research on Cancer (IARC). Coffee, tea, mate, methylxanthines and methylglyoxal. In: IARC Monographs on the evaluation of carcinogenic risks to humans. Lyon; 1991.

  21. Covolo L, Placidi D, Gelatti U, Carta A, Scotto Di Carlo A, Lodetti P, Piccichè A, Orizio G, Campagna M, Arici C, Porru S. Bladder cancer, GSTs, NAT1, NAT2, SULT1A1, XRCC1, XRCC3, XPD genetic polymorphisms and coffee consumption: a case-control study. Eur J Epidemiol. 2008;23:355–62.

    Article  CAS  PubMed  Google Scholar 

  22. Sala M, Cordier S, Chang-Claude J, Donato F, Escolar-Pujolar A, Fernandez F, González CA, Greiser E, Jöckel KH, Lynge E, Mannetje A, Pohlabeln H, et al. Coffee consumption and bladder cancer in nonsmokers: a pooled analysis of case–control studies in European countries. Cancer Causes Control. 2000;11:925–31.

    Article  CAS  PubMed  Google Scholar 

  23. Pelucchi C, La Vecchia C. Alcohol, coffee, and bladder cancer risk: a review of epidemiological studies. Eur J Cancer Prev. 2009;18:62–8.

    Article  PubMed  Google Scholar 

  24. Villanueva CM, Silverman DT, Murta-Nascimento C, Malats N, Garcia-Closas M, Castro F, Tardon A, Garcia-Closas R, Serra C, Carrato A, Rothman N, Real FX, et al. Coffee consumption, genetic susceptibility and bladder cancer risk. Cancer Causes Control. 2009;20:121–7.

    Article  PubMed  Google Scholar 

  25. Woolcott CG, King WD, Marrett LD. Coffee and tea consumption and cancers of the bladder, colon and rectum. Eur J Cancer Prev. 2002;11:137–45.

    Article  CAS  PubMed  Google Scholar 

  26. Zeegers MP, Tan FE, Goldbohm RA, van den Brandt PA. Are coffee and tea consumption associated with urinary tract cancer risk? A systematic review and meta-analysis. Int J Epidemiol. 2001;30:353–62.

    Article  CAS  PubMed  Google Scholar 

  27. Hung RJ, Boffetta P, Brennan P, Malaveille C, Hautefeuille A, Donato F, Gelatti U, Spaliviero M, Placidi D, Carta A, Scotto di Carlo A, Porru S. GST, NAT, SULT1A1, CYP1B1 genetic polymorphisms, interactions with environmental exposures and bladder cancer risk in a high-risk population. Int J Cancer. 2004;110:598–604.

    Article  CAS  PubMed  Google Scholar 

  28. Shen M, Hung RJ, Brennan P, Malaveille C, Donato F, Placidi D, Carta A, Hautefeuille A, Boffetta P, Porru S. Polymorphisms of the DNA repair genes XRCC1, XRCC3, XPD, interaction with environmental exposures, and bladder cancer risk in a case–control study in northern Italy. Cancer Epidemiol Biomarkers Prev. 2003;12:1234–40.

    CAS  PubMed  Google Scholar 

  29. Hung RJ, Boffetta P, Brennan P, Malaveille C, Gelatti U, Placidi D, Carta A, Hautefeuille A, Porru S. Genetic polymorphisms of MPO, COMT, MnSOD, NQO1, interactions with environmental exposures and bladder cancer risk. Carcinogenesis. 2004;25:973–8.

    Article  CAS  PubMed  Google Scholar 

  30. Schlesselman JJ. Case-control studies: design, conduct, analysis. USA: Oxford University Press; 1982. p. 145.

    Google Scholar 

  31. Cohen J, Cohen P, West SG, Aiken LS. Applied multiple regression/correlation analysis for the behavioral sciences. 3rd ed. Mahwah, NJ: Lawrence Earlbaum Associates; 2003.

    Google Scholar 

  32. Yang Q, Khoury MJ, Flanders WD. Sample size requirements in case-only designs to detect gene-environment interaction. Am J Epidemiol. 1997;146:713–20.

    CAS  PubMed  Google Scholar 

  33. Porru S, Placidi D, Carta A, Gelatti U, Ribero ML, Tagger A, Boffetta P, Donato F. Primary liver cancer and occupation in men: a case–control study in high-incidence area in Northern Italy. Int J Cancer. 2001;94:878–83.

    Article  CAS  PubMed  Google Scholar 

  34. Altayli E, Gunes S, Yilmaz AF, Goktas S, Bek Y. CYP1A2, CYP2D6, GSTM1, GSTP1, and GSTT1 gene polymorphisms in patients with bladder cancer in a Turkish population. Int Urol Nephrol. 2009;41:259–66.

    Article  CAS  PubMed  Google Scholar 

  35. Figueroa JD, Malats N, García-Closas M, Real FX, Silverman D, Kogevinas M, Chanock S, Welch R, Dosemeci M, Lan Q, Tardón A, Serra C, et al. Bladder cancer risk and genetic variation in AKR1C3 and other metabolizing genes. Carcinogenesis. 2008;29:1955–62.

    Article  CAS  PubMed  Google Scholar 

  36. Quattrochi LC, Vu T, Tukey RH. The human CYP1A2 gene and induction by 3-methylcholanthrene. A region of DNA that supports AH-receptor binding and promoter-specific induction. J Biol Chem. 1994;269:6949–54.

    CAS  PubMed  Google Scholar 

  37. Sogawa K, Fujii-Kuriyama Y. Ah receptor, a novel ligand-activated transcription factor. J Biochem. 1997;122:1075–9.

    CAS  PubMed  Google Scholar 

  38. Hankinson O. The aryl hydrocarbon receptor complex. Annu Rev Pharmacol Toxicol. 1995;35:307–40.

    Article  CAS  PubMed  Google Scholar 

  39. Hayashi S, Watanabe J, Kawajiri K. Genetic polymorphisms in the 5’-flanking region change transcriptional regulation of the human cytochrome P450IIE1 gene. J Biochem. 1991;110:559–65.

    CAS  PubMed  Google Scholar 

  40. International Agency for Research on Cancer (IARC). Working Group on the Evaluation of Carcinogenic Risks to Humans. Tobacco smoke and involuntary smoking. In: Lyon: IARC Scientific Publications; 2004; 83: 1–1438.

  41. Bartsch H, Caporaso N, Coda M, Kadlubar F, Malaveille C, Skipper P, Talaska G, Tannenbaum SR, Vineis P. Carcinogen hemoglobin adducts, urinary mutagenicity, and metabolic phenotype in active and passive cigarette smokers. J Natl Cancer Inst. 1990;82:1826–31.

    Article  CAS  PubMed  Google Scholar 

  42. Vineis P, Talaska G, Malaveille C, Bartsch H, Martone T, Sithisarankul P, Strickland P. DNA adducts in urothelial cells: relationship with biomarkers of exposure to arylamines and polycyclic aromatic hydrocarbons from tobacco smoke. Int J Cancer. 1996;65:314–6.

    Article  CAS  PubMed  Google Scholar 

  43. Hecht SS. Cigarette smoking: cancer risks, carcinogens, and mechanisms. Langenbecks Arch Surg. 2006;391:603–13.

    Article  PubMed  Google Scholar 

  44. Talaska G, Al-Juburi AZSS, Kadlubar FF. Smoking related carcinogen–DNA adducts in biopsy samples of human urinary bladder: identification of N-(deoxyguanosin-8-yl)-4-aminobiphenyl as a major adduct. Proc Natl Acad Sci USA. 1991;88:5350–4.

    Article  CAS  PubMed  Google Scholar 

  45. Curigliano G, Zhang YJ, Wang LY, Flamini G, Alcini A, Ratto C, Giustacchini M, Alcini E, Cittadini A, Santella RM. Immunohistochemical quantitation of 4-aminobiphenyl–DNA adducts and p53 nuclear overexpression in T1 bladder cancer of smokers and nonsmokers. Carcinogenesis. 1996;17:911–6.

    Article  CAS  PubMed  Google Scholar 

  46. Feng Z, Hu W, Rom WN, Beland FA, Tang MS. 4-aminobiphenyl is a major etiological agent of human bladder cancer: evidence from its DNA binding spectrum in human p53 gene. Carcinogenesis. 2002;23:1721–7.

    Article  CAS  PubMed  Google Scholar 

  47. Saletta F, Matullo G, Manuguerra M, Arena S, Bardelli A, Vineis P. Exposure to the tobacco smoke constituent 4-Aminobiphenyl induces chromosomal instability in human cancer cells. Cancer Res. 2007;67:7088–94.

    Article  CAS  PubMed  Google Scholar 

  48. Butler MA, Guengerich FP, Kadlubar FF. Metabolic oxidation of the carcinogens 4-aminobiphenyl and 4, 4′-methylenebis(2-chloroaniline) by human hepatic microsomes and by purified rat hepatic cytochrome P-450 monooxygenases. Cancer Res. 1989;49:25–31.

    CAS  PubMed  Google Scholar 

  49. Kadlubar FF, Miller JA, Miller EC. Hepatic microsomal N-glucuronidation and nucleic acid binding of N-hydroxy arylamines in relation to urinary bladder carcinogenesis. Cancer Res. 1977;37:805–14.

    CAS  PubMed  Google Scholar 

  50. Kadlubar FF. Carcinogenic aromatic amine metabolism and DNA adduct detection in human. In: Emster L, editor. Xenobiotics and cancer. London: Taylor & Francis, Ltd.; 1991. p. 329–38.

    Google Scholar 

  51. Bartsch H, Malaveille C, Friesen M, Kadlubar FF, Vineis P. Black (air-cured) and blond (flue-cured) tobacco cancer risk. IV. Molecular dosimetrystudies implicates aromatic amines as bladder carcinogens. Eur J Cancer. 1993;29:1199–207.

    Article  Google Scholar 

  52. Frederickson SM, Messing EM, Renikoff CA, Swaminathan S. Relationship between in vivo acetylator phenotypes and cytosolic N-acetyltransferase and O-acetyltransferase activities in human uroepithelial cells. Cancer Epidemiol Biomark Prev. 1994;3:25–32.

    CAS  Google Scholar 

  53. Sinués B, Sáenz MA, Lanuza J, Bernal ML, Fanlo A, Juste JL, Mayayo E. Five caffeine metabolite ratios to measure tobacco-induced CYP1A2 activity and their relationships with urinary mutagenicity and urine flow. Cancer Epidemiol Biomarkers Prev. 1999;8:159–66.

    PubMed  Google Scholar 

  54. Murray S, Lake BG, Gray S, Edwards AJ, Springall C, Bowey EA, Williamson G, Boobis AR, Gooderham NJ. Effect of cruciferous vegetable consumption on heterocyclic aromatic amine metabolism in man. Carcinogenesis. 2001;22:1413–20.

    Article  CAS  PubMed  Google Scholar 

  55. Pavanello S, Simioli P, Mastrangelo G, Lupi S, Gabbani G, Gregorio P, Clonfero E. Role of metabolic polymorphisms NAT2 and CYP1A2 on urinary mutagenicity after a pan-fried hamburger meal. Food Chem Toxicol. 2002;40:1139–44.

    Article  CAS  PubMed  Google Scholar 

  56. Landi MT, Zocchetti C, Bernucci I, Kadlubar FF, Tannenbaum S, Skipper P, Bartsch H, Malaveille C, Shields P, Caporaso NE, Vineis P. Cytochrome P4501A2: enzyme induction and genetic control in determining 4-aminobiphenyl-hemoglobin adduct levels. Cancer Epidemiol Biomarkers Prev. 1996;5:693–8.

    CAS  PubMed  Google Scholar 

  57. Kadlubar FF, Dooley KL, Teitel CH, Roberts DW, Benson RW, Butler MA, Bailey JR, Young JF, Skipper PW, Tannenbaum SR. The frequency of urination and its effects on metabolism pharmacokinetics, blood hemoglobin adduct formation, and liver and urinary bladder DNA adduct levels in Beagle dogs administered the carcinogen, 4-aminobiphenyl. Cancer Res. 1991;51:4371–7.

    CAS  PubMed  Google Scholar 

  58. Chen M, Kamat AM, Huang M, Grossman HB, Dinney CP, Lerner SP, Wu X, Gu J. High-order interactions among genetic polymorphisms in nucleotide excision repair pathway genes and smoking in modulating bladder cancer risk. Carcinogenesis. 2007;28:2160–5.

    Article  CAS  PubMed  Google Scholar 

  59. Manuguerra M, Matullo G, Veglia F, Autrup H, Dunning AM, Garte S, Gormally E, Malaveille C, Guarrera S, Polidoro S, Saletta F, Peluso M, et al. Multi-factor dimensionality reduction applied to a large prospective investigation on gene-gene and gene-environment interactions. Carcinogenesis. 2007;28:414–22.

    Article  CAS  PubMed  Google Scholar 

  60. Andrew AS, Nelson HH, Kelsey KT, Moore JH, Meng AC, Casella DP, Tosteson TD, Schned AR, Karagas MR. Concordance of multiple analytical approaches demonstrates a complex relationship between DNA repair gene SNPs, smoking and bladder cancer susceptibility. Carcinogenesis. 2006;27:1030–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Italian Association for Research on Cancer (AIRC) 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofia Pavanello.

Additional information

The authors Pavanello, Mastrangelo, Placidi and Porru have equally contributed to conception and design of the study, analysis and interpretation of data, drafting the article and final approval.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavanello, S., Mastrangelo, G., Placidi, D. et al. CYP1A2 polymorphisms, occupational and environmental exposures and risk of bladder cancer. Eur J Epidemiol 25, 491–500 (2010). https://doi.org/10.1007/s10654-010-9479-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-010-9479-8

Keywords

Navigation