Skip to main content
Log in

QSAR models of antiproliferative activity of imidazo[2,1-b][1,3,4]thiadiazoles in various cancer cell lines

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Imidazo[2,1-b][1,3,4]thiadiazoles have been recognized to possess antiproliferative potency towards a wide spectrum of cancer cell lines. QSAR investigations on a set of 42 di(tri)substituted imidazo[2,1-b][1,3,4]thiadiazoles were carried out to find the descriptors determining their biological potency. Three-variable equations were obtained by combinatorial protocols in multiple linear regression (CP MLR) for all three studied cancer cell lines. They showed that lipophilicity, electronic, and steric factors are decisive for the antiproliferative potency of compounds and indicate the important role of nitrogen atoms of imidazothiadiazole ring in the interactions with the molecular target. The best models gave high r squared values in the range from 0.887 to 0.924. They also have good predictive accuracy confirmed by the high value LOO cross-validation coefficient \(R_{\mathrm{CV}}^2 \) (from 0.842 to 0.904) and by the external validation quantities.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Joshi SD, Manish K, Badiger A (2013) Synthesis and evaluation of antibacterial and antitubercular activities of some novel imidazo[2,1-\(b\)][1,3,4]thiadiazole derivatives. Med Chem Res 22:869–878. doi:10.1007/s00044-012-0080-4

    Article  CAS  Google Scholar 

  2. Chandrakantha B, Isloor AM, Shetty P, Fun HK, Hegde G (2014) Synthesis and biological evaluation of novel substituted 1,3,4-thiadiazole and 2,6-diaryl substituted imidazo[2,1-\(b\)][1,3,4]thiadiazole derivatives. Eur J Med Chem 71:316–323. doi:10.1016/j.ejmech.2013.10.056

    Article  CAS  PubMed  Google Scholar 

  3. Ramprasad J, Nayak N, Dalimba U, Yogeeswari P, Sriram D (2015) One-pot synthesis of new triazole-imidazo[2,1-\(b\)][1,3,4]thiadiazole hybrids via click chemistry and evaluation of their antitubercular activity. Bioorg Med Chem Lett 25:4169–4173. doi:10.1016/j.bmcl.2015.08.009

    Article  CAS  PubMed  Google Scholar 

  4. Jadhav VB, Kulkarni MV, Rasal VP, Biradar SS, Vinay MD (2008) Synthesis and anti-inflammatory evaluation of methylene bridged benzofuranyl imidazo[2,1-\(b\)][1,3,4]thiadiazoles. Eur J Med Chem 43:1721–1729. doi:10.1016/j.ejmech.2007.06.023

    Article  CAS  PubMed  Google Scholar 

  5. Gadad AK, Palkar MB, Arland K, Noolvi MN, Boreddy TS, Wagwade J (2008) Synthesis and biological evaluation of 2-trifluoromethyl/sulfonamido-5,6-diaryl substituted imidazo[2,1-\(b\)]-1,3,4-thiadiazoles: A novel class of cyclooxygenase-2 inhibitors. Bioorg Med Chem 16:276–283. doi:10.1016/j.bmc.2007.09.038

    Article  CAS  PubMed  Google Scholar 

  6. Romagnoli R, Baraldi PG, Prencipe F, Balzarini J, Liekens S, Estevez F (2015) Design, synthesis and antiproliferative activity of novel heterobivalent hybrids based on imidazo[2,1-\(b\)][1,3,4]thiadiazole and imidazo[2,1-\(b\)][1,3]thiazole scaffolds. Eur J Med Chem 101:205–217. doi:10.1016/j.ejmech.2015.06.042

    Article  CAS  PubMed  Google Scholar 

  7. Noolvi MN, Patel HM, Singh N, Gadad AK, Cameotra SS, Badiger A (2011) Synthesis and anticancer evaluation of novel 2-cyclopropylimidazo[2,1-\(b\)][1,3,4]-thiadiazole derivatives. Eur J Med Chem 246:4411–4418. doi:10.1016/j.ejmech.2011.07.012

    Article  Google Scholar 

  8. Kumar S, Hegde M, Gopalakrishnan V, Renuka VK, Ramareddy SA, De Clercq E, Schols D, Narasimhamurthy AKG, Raghavan SC, Karki SS (2014) 2-(4-Chlorobenzyl)-6-arylimidazo[2,1-\(b\)][1,3,4]thiadiazoles: synthesis, cytotoxic activity and mechanism of action. Eur J Med Chem 84:687–697. doi:10.1016/j.ejmech.2014.07.054

    Article  CAS  PubMed  Google Scholar 

  9. Gireesh TM, Kamble RR, Taj T (2011) Synthesis and antimicrobial and anticancer activity of new of imidazo[2,1-\(b\)][1,3,4]thiadiazoles. Pharm Chem J 45:313–316. doi:10.1007/s11094-011-0624-9

    Article  CAS  Google Scholar 

  10. Kamal A, Reddy VS, Santosh K, Kumar GB, Shaik AB, Mahesh R, Chourasiya SS, Sayeed IB, Kotamraju S (2014) Synthesis of imidazo[2,1-\(b\)][1,3,4]thiadiazole-chalcones as apoptosis inducing anticancer agents. Med Chem Comm 5:1718–1723. doi:10.1039/c4md00228h

    Article  CAS  Google Scholar 

  11. Noolvi MN, Patel HM, Kamboj S, Kaur A, Mann V (2012) 2,6-Disubstituted imidazo[2,1-\(b\)][1,3,4]thiadiazoles: search for anticancer agents. Eur J Med Chem 56:56–69. doi:10.1016/j.ejmech.2012.08.012

    Article  CAS  PubMed  Google Scholar 

  12. Gadad AK, Karki SS, Rajurkar VG, Bhongade BA (1999) Synthesis and biological evaluation of 5-formyl-6-arylimidazo(2,1-b)-1,3,4-thiadiazole-2-N-(dimethylamino-methino) sulfonamides as antitumor agents. Arzneim Forsch 49:858–863

    CAS  Google Scholar 

  13. Taher AT, Georgey HH, EI-Subbagh HI (2012) Novel 1,3,4-heterodiazole analogues: synthesis and in vitro antitumor activity. Eur J Med Chem 47:445–451. doi:10.1016/j.ejmech.2011.11.013

    Article  CAS  PubMed  Google Scholar 

  14. Terzioglu N, Gursoy A (2003) Synthesis and anticancer evaluation of some new hydrazone derivatives of 2,6-dimethylimidazo[2,1-\(b\)][1,3,4]thiadiazole-5-carbohydrazide. Eur J Med Chem 38:781–786. doi:10.1016/S0223-5234(03)00138-7

    Article  CAS  PubMed  Google Scholar 

  15. Kumar S, Gopalakrishnan V, Hegde M, Rana V, Dhepe SS, Ramareddy SA, Leoni A, Locatelli A, Morigi R, Rambaldi M, Srivastava M, Raghavan SC, Karki SS (2014) Synthesis and antiproliferative activity of imidazo[2,1-\(b\)][1,3,4]thiadiazole derivatives. Bioorg Med Chem Lett 24:4682–4688. doi:10.1016/j.bmcl.2014.08.032

    Article  CAS  PubMed  Google Scholar 

  16. Karki SS, Panjamurthy K, Kumar S, Nambiar M, Ramareddy SA, Chiruvella KK, Raghavan SC (2011) Synthesis and biological evaluation of novel 2-aralkyl-5-substituted-6-(4’-fluorophenyl)-imidazo[2,1-\(b\)][1,3,4]thiadiazole derivatives as potent anticancer agents. Eur J Med Chem 46:2109–2116. doi:10.1016/j.ejmech.2011.02.064

    Article  CAS  PubMed  Google Scholar 

  17. Molina-Ruiz R, Saiz-Urra L, Rodriguez-Borges JE, Perez-Castillo Y, Gonzalez MP, Garcia-Mera X, Cordeiro MNDS (2009) A TOPological sub-structural molecular design (TOPS-MODE)-QSAR approach for modeling the antiproliferative activity against murine leukemia tumor cell line (L1210). Bioorg Med Chem 17:537–547. doi:10.1016/j.bmc.2008.11.084

    Article  CAS  PubMed  Google Scholar 

  18. Vujasinovic I, Paravic-Radicevic A, Mlinaric-Majerski K, Brajsa K, Bertosa B (2012) Synthesis and biological validation of novel pyrazole derivatives with anticancer activity guided by 3D-QSAR analysis. Bioorg Med Chem 20:2101–2110. doi:10.1016/j.bmc.2012.01.032

    Article  CAS  PubMed  Google Scholar 

  19. George RF, Ismail NSM, Stawinski J, Girgis AS (2013) Design, synthesis and QSAR studies of dispiroindole derivatives as new antiproliferative agents. Eur J Med Chem 68:339–351. doi:10.1016/j.ejmech.2013.07.035

    Article  CAS  PubMed  Google Scholar 

  20. Singh R, Jain A, Ravichandran V, Mourya V, Agrawal RK (2009) Prediction of antiproliferative activity of some flavone derivatives: QSAR study. Med Chem Res 18:523–537. doi:10.1007/s00044-008-9146-8

    Article  CAS  Google Scholar 

  21. Matysiak J (2008) QSAR of antiproliferative activity of N-substituted 2-amino-5-(2,4-dihydroxyphenyl)-1,3,4-thiadiazoles in various human cancer cells. QSAR Comb Sci 27:607–617. doi:10.1002/qsar.200610157

    Article  CAS  Google Scholar 

  22. Carballo RM, Leon LG, Quijano-Quinones RF, Mena-Rejon GJ, Martin VS, Padron JM, Padron JI (2014) Antiproliferative evaluation of N-sulfonyl-2-alkyl-six membered azacycles. A QSAR study. Med Chem 10:571–579. doi:10.2174/1573406409666131124231552

    Article  CAS  PubMed  Google Scholar 

  23. Yao SW, Lopes VH, Fernandez F, Garcia-Mera X, Morales M, Rodriguez-Borges JE, Cordeiro MN (2003) Synthesis and QSAR study of the anticancer activity of some novel indane carbocyclic nucleosides. Bioorg Med Chem 11:4999–5006. doi:10.1016/j.bmc.2003.09.005

    Article  CAS  PubMed  Google Scholar 

  24. Verma RP, Hansch C (2004) Elucidation of structure-activity relationships for 2- or 6-substituted-5,8-dimethoxy-1,4-naphthoquinones. Bioorg Med Chem 12:5997–6009. doi:10.1016/j.bmc.2004.08.017

    Article  CAS  PubMed  Google Scholar 

  25. Mekapati SB, Denny WA, Kurup A, Hansch C (2001) QSAR of anticancer compounds. Bis(11-oxo-11\(H\)-indeno[1,2-\(b\)]quinoline-6-carboxamides), bis(phenazine-1-carboxamides), and bis(naphthalimides). Bioorg Med Chem 9:2757–2762. doi:10.1016/S0968-0896(01)00109-2

    Article  CAS  PubMed  Google Scholar 

  26. Markovic V, Eric S, Stanojkovic T, Gligorijevic N, Arandelovic S, Todorovic N, Trifunovic S, Manojlovic N, Jelic R, Joksovic MD (2011) Antiproliferative activity and QSAR studies of a series of new 4-aminomethylidene derivatives of some pyrazol-5-ones. Bioorg Med Chem Lett 21:4416–4421. doi:10.1016/j.bmcl.2011.06.025

    Article  CAS  PubMed  Google Scholar 

  27. Cvijetic IN, Zizak ZP, Stanojkovic TP, Juranic ZD, Terzic N, Opsenica IM, Opsenica DM, Juranic IO, Drakulic BJ (2010) An alignment independent 3D QSAR study of the antiproliferative activity of 1,2,4,5-tetraoxanes. Eur J Med Chem 45:4570–4577. doi:10.1016/j.ejmech.2010.07.019

    Article  CAS  PubMed  Google Scholar 

  28. Matysiak J, Niewiadomy A, Paw B, Dybala I (2011) NMR QSAR model for the analysis of 4-(5-arylamino-1,3,4-thiadiazol-2-yl)benzene-1,3-diols. Arch Pharm 344:340–344. doi:10.1002/ardp.201000029

    Article  CAS  Google Scholar 

  29. Duchowicz PR, Bennardi DO, Bacelo DE, Bonifazi EL, Rios-Luci C, Padron JM, Burton G, Misico RI (2014) QSAR on antiproliferative naphthoquinones based on a conformation-independent approach. Eur J Med Chem 77:176–184. doi:10.1016/j.ejmech.2014.02.057

    Article  CAS  PubMed  Google Scholar 

  30. Masand VH, Mahajan DT, Alafeefy AM, Bukhari SNA, Elsayed NN (2015) Optimization of antiproliferative activity of substituted phenyl 4-(2-oxoimidazolidin-1-yl) benzenesulfonates: QSAR and CoMFA analyses. Eur J Pharm Sci 77:230–237. doi:10.1016/j.ejps.2015.06.001

    Article  CAS  PubMed  Google Scholar 

  31. Moriguchi I, Hirono S, Nakagome I, Hirano H (1994) Comparison of reliability of log P values for drugs calculated by several methods. Chem Pharm Bull 42:976–978. doi:10.1248/cpb.42.976

    Article  CAS  Google Scholar 

  32. Ghose AK, Crippen GM (1987) Atomic physicochemical parameters for three-dimensional-structure-directed quantitative structure-activity relationships. 2. Modeling dispersive and hydrophobic interactions. J Chem Inf Comput Sci 27:21–35. doi:10.1021/ci00053a005

    Article  CAS  PubMed  Google Scholar 

  33. Thanikaivelan P, Subramanian V, Rao JR, Nair BU (2000) Application of quantum chemical descriptor in quantitative structure activity and structure property relationship. Chem Phys Lett 323:59–70. doi:10.1016/S0009-2614(00)00488-7

    Article  CAS  Google Scholar 

  34. QSAR Model Development Using DTC Lab. Software Tools. http://teqip.jdvu.ac.in/QSAR_Tools/ (licence agreement)

  35. Roy PP, Paul S, Mitra I, Roy K (2009) On two novel parameters for validation of predictive QSAR models. Molecules 14:1660–1701. doi:10.3390/molecules14051660

    Article  CAS  PubMed  Google Scholar 

  36. Leonard JT, Roy K (2006) On selection of training and test sets for the development of predictive QSAR models. QSAR Comb Sci 25:235–251. doi:10.1002/qsar.200510161

  37. Golbraikh A, Tropsha A (2002) Beware of q(2)!. J Mol Graph Model 20:269–276. doi:10.1016/S1093-3263(01)00123-1

    Article  CAS  PubMed  Google Scholar 

  38. Roy K, Kar S (2014) The \(r_{m}^{2}\) metrics and regression through origin approach: reliable and useful validation tools for predictive QSAR models (Commentary on ‘Is regression through origin useful in external validation of QSAR models?’). Eur J Pharm Sci 62:111–114. doi:10.1016/j.ejps.2014.05.019

    Article  CAS  PubMed  Google Scholar 

  39. Hansch C, Clayton JM (1973) Lipophilic character and biological activity of drugs II: the parabolic case. J Pharm Sci 61:1–21

    Article  Google Scholar 

  40. McKeage MJ, Berners-Price SJ, Galettis P, Bowen RJ, Brouwer W, Ding L, Zhuang L, Baguley BC (2000) Role of lipophilicity in determining cellular uptake and antitumour activity of gold phosphine complexes. Cancer Chemother Pharmacol 46:343–50. doi:10.1007/s002800000166

    Article  CAS  PubMed  Google Scholar 

  41. Spartan 10 (2011) Wavefunction Inc, California, USA. http://www.wavefun.com

  42. ACD/ChemSketch 11.02 (2008) Advanced Chemistry Development, Inc., Toronto, Canada. http://www.acdlabs.com

  43. MedChem Designer 3.0 (2014) Simulations Plus, Inc, Lancaster, California, USA., http://www.simulations-plus.com

  44. Gupta MK, Prabhakar YS (2006) Topological descriptors in modeling the antimalarial activity of 4-(3’,5’-disubstituted anilino)quinolines. J Chem Inf Model 46:93–102. doi:10.1021/ci0501140

    Article  CAS  PubMed  Google Scholar 

  45. Saquib M, Gupta MK, Sagar R, Prabhakar YS, Shaw AK, Kumar R, Maulik PR, Gaikwad AN, Sinha S, Srivastava AK, Chaturvedi V, Srivastava R, Srivastava BS (2007) C-3 alkyl/arylalkyl-2,3-dideoxy hex-2-enopyranosides as antitubercular agents: synthesis, biological evaluation, and QSAR study. J Med Chem 50:2942–2950. doi:10.1021/jm070110h

    Article  CAS  PubMed  Google Scholar 

  46. Gaudio AC (2009) BuildQSAR. 2.1.0.0. Federal University of Espírito Santo, Brazil. http://www.profanderson.net

  47. de Oliveira DB, Gaudio AC (2001) BuildQSAR: a new computer program for QSAR analysis. Quant Struct Act Rel 19:599–601. doi:10.1002/1521-3838(200012)19:6<599:AID-QSAR599>3.0.CO;2-B

    Article  Google Scholar 

  48. Statistica 7.1 (2005) StatSoft Inc, Tulsa, OK, USA. http://www.statsoft.pl

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Matysiak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matysiak, J., Niewiadomy, A. QSAR models of antiproliferative activity of imidazo[2,1-b][1,3,4]thiadiazoles in various cancer cell lines. Mol Divers 21, 211–218 (2017). https://doi.org/10.1007/s11030-016-9705-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-016-9705-8

Keywords

Navigation