Skip to main content
Log in

Accurate backbone curves and dynamic failure for large-amplitude axisymmetric vibrations of imperfect circular plates

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper deals with the solution of modified-Duffing ordinary differential equation for large-amplitude vibrations of imperfect circular plate. Four types of boundary conditions are considered as well as viscous damping. Lindstedt’s perturbation technique and Runge–Kutta method are applied. The solution from two methods are plotted and compared for a validity check. Lindstedt’s perturbation technique is proved to be accurate for sufficiently small vibration amplitude and imperfection. The results from Runge–Kutta method is plotted to form a backbone curve except for the case with clamped and zero radial stress boundary condition. Instead of expected softening–hardening process, the curve is only softening thus no longer backbone. More importantly, a dynamic failure is noticed when initial vibration amplitude grows under this boundary condition. A geometric imperfection will further help to trigger this failure at a smaller amplitude. This finding has served a new way to judge dynamic failure mode and is valuable for structure design concerning vibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mallikarjuna TK (1993) A critical review and some results of recently developed refined theories of fiber-reinforced laminated composites and sandwiches. Compos Struct 23(4):293–312. doi:10.1016/0263-8223(93)90230-N

    Article  ADS  Google Scholar 

  2. Kang MK, Huang R, Knowles T (2006) Torsional vibrations of circular elastic plates with thickness steps. IEEE Trans Ultrasonic Ferroelectr Freq Control 53(2). doi:10.1109/TUFFC.2006.1593373

  3. Najafov AM, Sofiyev AH, Hui D, Kadioglu F, Dorofeyskaya NV, Huang H (2014) Non-linear dynamic response of symmetric and antisymmetric cross-ply laminated orthotropic thin shells. Meccanica 49:413–427. doi:10.1007/s11012-013-9802-z

    Article  MathSciNet  MATH  Google Scholar 

  4. Yamaki N (1961) Influence of large amplitudes on flexural vibrations of elastic plates. ZAMM 41:501–510

    Article  MathSciNet  MATH  Google Scholar 

  5. Hui D (1983) Large amplitude axisymmetric vibrations of geometrically imperfect circular plates. J Sound Vib 91:239–246. doi:10.1016/0022-460X(83)90899-4

    Article  ADS  MATH  Google Scholar 

  6. Hui D (1983) Large amplitude vibrations of geometrically imperfect shallow spherical shells with structural damping. AIAA J 21(12):1736–1741. doi:10.2514/3.8317

    Article  ADS  MATH  Google Scholar 

  7. Hui D (1984) Effects of geometric imperfections on large amplitude vibrations of rectangular plates with hysteresis damping. ASME J Appl Mech 51(1):216–220. doi:10.1115/1.3167582

    Article  Google Scholar 

  8. Hui D (1985) Soft-spring nonlinear vibrations of antisymmetrically laminated rectangular plates. Int J Mech Sci 27:397–408. doi:10.1016/0020-7403(85)90030-X

    Article  MATH  Google Scholar 

  9. Hui D (1990) Accurate backbone curves for a modified duffing equation for vibrations of imperfect structures with viscous damping. J Vib Acoust 112:304–311. doi:10.1115/1.2930509

    Article  Google Scholar 

  10. Lindstedt A, Akad AK (1882) Wiss. St. Petersburg 31, no. 4

  11. Pirbodaghi T, Hoseini SH, Ahmadian MT, Farrahi GH (2009) Duffing equations with cubic and quintic nonlinearities. Comput Math Appl 57(3):500–506. doi:10.1016/j.camwa.2008.10.082

    Article  MathSciNet  MATH  Google Scholar 

  12. Elías-Zúñiga Alex (2013) Exact solution of the cubic quintic duffing oscillator. Appl Math Model 37(4):2574–2579. doi:10.1016/j.apm.2012.04.005

    Article  MathSciNet  Google Scholar 

  13. Huang He, Hui David (2015) Accurate backbone curves for large-amplitude vibrations of imperfect rectangular plate with viscous damping. KSCE. doi:10.1007/s12205-015-0114-9

    Google Scholar 

  14. Gonçalves PB, Del Prado ZJGN (2002) Nonlinear oscillations and stability of parametrically excited cylindrical shells. Meccanica 37(6):569–597. doi:10.1023/A:1020972109600

    Article  MATH  Google Scholar 

  15. Bauer HF (1968) Nonlinear response of elastic plates to pulse excitations. J Appl Mech 35(1). doi:10.1115/1.3601172

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Hui.

Appendix: Lindstedt’s perturbation solution to Duffing equation with a quadratic term

Appendix: Lindstedt’s perturbation solution to Duffing equation with a quadratic term

The second order non-linear Duffing ordinary differential equation is

$$ {\text{w}}\left({\text{t}} \right),_{\text{tt}}\,+\,{\text{k}}\left[{{\text{w}}\left({\text{t}} \right) + \upepsilon{\text{a}}_{2} {\text{w}}\left({\text{t}} \right)^{2} + \text{}{\text{w}}\left({\text{t}} \right)^{3}} \right] = 0 $$
(30)

By changing the variable, \( \uptau = {{\Omega}}{\rm t} \), Eq. (30) will turn into

$$ {{\Omega}}^{2} {\text{w}}\left({\uptau} \right),_{{{{\uptau\uptau}}}}\,+\,{\text{k}}\left[{{\text{w}}\left({\uptau} \right) + \upepsilon{\text{a}}_{2} {\text{w}}\left({\uptau} \right)^{2} + \upepsilon{\text{w}}\left({\uptau} \right)^{3}} \right] = 0 $$
(31)

The periodic solution \( {\text{w}}\left( {\uptau} \right) \) and the associated frequency are assumed to be of the forms

$$ {\text{w}}\left({\uptau} \right) = {\text{w}}_{0} \left({\uptau} \right) + \upepsilon{}{\text{w}}_{1} \left({\uptau} \right) + \upepsilon{}^{2} {\text{w}}_{2} \left({\uptau} \right) + \cdots, $$
(32)
$$ { \Omega} = {\Omega}_{0} + \upepsilon{\Omega}_{1} + \upepsilon^{2} {\Omega}_{2} + \cdots. $$
(33)

Furthermore, the non-linear terms in Eq. (31) are also expanded in a power series in \( \upepsilon \). Equating terms incolving \( \upepsilon^0 \), \( \upepsilon \), and \( \upepsilon^2 \) and dividing through by \( k \) (defined to be \( {{\Omega }}_{0}^{2} \)), one obtains

$$ {\text{w}}_{0} \left( {\uptau} \right),_{{{{\uptau\uptau}}}} + {\text{w}}_{0} \left( {\uptau} \right) = 0 $$
(34)
$$ \begin{aligned} {\text{w}}_{1} \left( {\uptau} \right),_{{{{\uptau\uptau}}}} + {\text{w}}_{1} \left( {\uptau} \right) & = - {\text{w}}_{0} \left( {\uptau} \right) - {\text{w}}_{0} \left( {\uptau} \right)^{3} - {\text{a}}_{2} {\text{w}}_{0} \left( {\uptau} \right)^{2} \\ & \quad - 2\left( {{{\Omega }}_{1} /{{\Omega }}_{0} } \right){\text{w}}_{0} \left( {\uptau} \right),_{{{{\uptau \uptau}}}} \\ \end{aligned} $$
(35)
$$ \begin{aligned} {\text{w}}_{2} \left( {\uptau} \right),_{{{{\uptau\uptau}}}} + {\text{w}}_{2} \left( {{\uptau }} \right) & = \left[ { - 2{\text{a}}_{2} {\text{w}}_{0} \left( {\uptau} \right) - 3{\text{w}}_{0} \left( {\uptau} \right)^{2} } \right]{\text{w}}_{1} \left( {\uptau} \right) \\ & \quad - \left[ {2\left( {{{\Omega }}_{2} /{{\Omega }}_{0} } \right) + \left( {{{\Omega }}_{1} /{{\Omega }}_{0} } \right)^{2} } \right]{\text{w}}_{0} \left( {\uptau} \right),_{{{{\uptau\uptau}}}} \\ & \quad - 2\left( {{{\Omega }}_{1} /{{\Omega }}_{0} } \right){\text{w}}_{1} \left( {\uptau} \right),_{{{{\uptau\uptau}}}} \ldots \\ \end{aligned} $$
(36)

and the initial conditions are

$$ {\text{w}}_{0} \left( {\uptau} \right),_{{{\uptau\uptau}}} = 0, \quad {\text{w}}_{1} \left( {\uptau} \right),_{{{\uptau\uptau}}} = 0,\quad {\text{w}}_{2} \left( {\uptau} \right),_{{{\uptau\uptau}}} = 0, \ldots $$
(37)

The solution of Eq. (34) is

$$ {\text{w}}_{0} \left( {\uptau} \right) = {\text{Acos}}\left( {\uptau} \right) $$
(38)

Substituting \( {\text{w}}_{0} \left( {\uptau} \right) \) into Eq. (35), one obtains

$$ \begin{aligned} {\text{w}}_{1} \left( {\uptau} \right),_{{{\uptau\uptau}}}\,+\,\,{\text{w}}_{1} \left( {\uptau} \right) & = - \left( {{\text{a}}_{2} {\text{A}}^{2} /2} \right)\left[ {1 + \cos \left( {2{\uptau}} \right)} \right] \\ & \quad + \left[ {2\left( {{{\Omega }}_{1} /{{\Omega }}_{0} } \right){\text{A}} - \left( {3{\text{A}}^{3} /4} \right)} \right]{ \cos }\left( {\uptau} \right) \\ & \quad - \left( {{\text{A}}^{3} /4} \right){ \cos }\left( {3{\uptau}} \right) \\ \end{aligned} $$
(39)

In order to avoid secular terms, the coefficient of \( { \cos }\left( {\uptau} \right) \) is set to zero so that

$$ {{\Omega }}_{1} = \left( {3/8} \right){{\Omega }}_{0} {\text{A}}^{2} $$
(40)

Accordingly, the solution to the differential equation for \( {\text{w}}_{1} \left( {\uptau} \right) \) is

$$ {\text{w}}_{1} \left( {\uptau} \right) = - \left( {{\text{a}}_{2} {\text{A}}^{2} /2} \right) + \left( {{\text{a}}_{2} {\text{A}}^{2} /6} \right)\cos \left( {2{\uptau}} \right) + \left( {{\text{A}}^{3} /32} \right){ \cos }\left( {3{\uptau}} \right) $$
(41)

Finally, substituting the known forms for \( {\text{w}}_{0} \left( {\uptau} \right) \), \( {\text{w}}_{1} \left( {\uptau} \right) \) and \( {{\Omega }}_{1} \) into equation 35, one obtains

$$ \begin{aligned} &{\text{w}}_{2} \left( {\uptau} \right),_{{{\uptau\uptau}}} +\, {\text{w}}_{2} \left( {\uptau} \right) = \left[2\left( {{{\Omega }}_{2} /{{\Omega }}_{0} } \right){\text{A}} \right.\\ & \quad\left.+\, \left( {5/6} \right){\text{a}}_{2}^{2} {\text{A}}^{3} + \left( {15/128} \right){\text{A}}^{5} \right]{ \cos }\left( {\uptau} \right) \\ & \quad -\,\left[ {\left( {4/3} \right)\left( {{{\Omega }}_{1} /{{\Omega }}_{0} } \right){\text{a}}_{2} {\text{A}}^{2} - \left( {{\text{a}}_{2} /32} \right){\text{A}}^{4} } \right]{ \cos }\left( {2{\uptau}} \right) \\ & \quad + \left[ {\left( {21{\text{A}}^{5} /128} \right) - \left( {{\text{a}}_{2}^{2} {\text{A}}^{3} /6} \right)} \right]{ \cos }\left( {3{\uptau}} \right) \\ & \quad \times \left( {{\text{a}}_{2} {\text{A}}^{4} /32} \right){ \cos }\left( {4{\uptau}} \right) - \left( {3{\text{A}}^{5} /128} \right){ \cos }\left( {5{\uptau}} \right) \\ \end{aligned} $$
(42)

doneAgain, setting the coefficient of \( { \cos }\left( {\uptau} \right) \) to zero yields

$$ {{\Omega }}_{2} /{{\Omega }}_{0} = - \left[ {\left( {15{\text{A}}^{4} /256} \right) + \left( {5/12} \right){\text{a}}_{2}^{2} {\text{A}}^{2} } \right] $$
(43)

Furthermore, the solution to the differential equation for \( {\text{w}}_{2} \left( {\uptau} \right) \) is

$$ \begin{aligned} {\text{w}}_{2} \left( {\uptau} \right) & = \left({ -1/3} \right)\left[ \left( {4/3} \right) \left({{{\Omega }}_{1} /{{\Omega }}_{0} } \right)\left( {{\text{a}}_{2} {\text{A}}^{2} } \right) \right.\\ &\quad\left.-\,\left( {{\text{a}}_{2} {\text{A}}^{4} /32} \right) \right]{ \cos }\left( {2{\uptau}} \right) \\ & \quad - \left( {1/8} \right)\left[ {\left( {21/128} \right){\text{A}}^{5} - \left( {{\text{a}}_{2}^{2} {\text{A}}^{3} /6} \right)} \right]{ \cos }\left( {3{\uptau}} \right) \\ & \quad + \left( {1/15} \right)\left( {{\text{a}}_{2} {\text{A}}^{4} /32} \right){ \cos }\left( {4{\uptau}} \right)\\ &\quad +\, \left( {{\text{A}}^{5} /10} \right){ \cos }\left( {5{\uptau}} \right) \\ \end{aligned} $$
(44)

The solution is obtained by assembling \( {\text{w}}_{0} \left( {\uptau} \right) \), \( {\text{w}}_{0} \left( {\uptau} \right) \) and \( {\text{w}}_{0} \left( {\uptau} \right) \) in Eq. (32) and replacing \( \uptau \) by \( {{\Omega t}} + {{\upvarphi }} \). Thus, for a given set of initial conditions \( {\text{w}}\left( {{\text{t}} = 0} \right) \) and \( {\text{w}},_{\text{t}} \left( {{\text{t}} = 0} \right) \), the value of the amplitude A and the phase angle \( {{\upvarphi }} \) can be found. Finally, substituting \( {{\Omega }}_{1} \) and \( {{\Omega }}_{2} \) into Eq. (33) shows that the ratio of the non-linear frequency to the linear frequency is related to the vibration amplitude by

$$ {{\Omega}}/{{\Omega}}_{0} = 1 + \left[{\left({3\upepsilon/8} \right) - \left({5/12} \right){\text{a}}_{2}^{2} \upepsilon^{2}} \right]{\text{A}}^{2} - \left({15\upepsilon^{2}/256} \right){\text{A}}^{4} $$
(45)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Hui, D. Accurate backbone curves and dynamic failure for large-amplitude axisymmetric vibrations of imperfect circular plates. Meccanica 51, 559–567 (2016). https://doi.org/10.1007/s11012-015-0223-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0223-z

Keywords

Navigation