Skip to main content
Log in

Strongly nonlinear free vibration of four edges simply supported stiffened plates with geometric imperfections

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

This article investigated the strongly nonlinear free vibration of four edges simply supported stiffened plates with geometric imperfections. The von Karman nonlinear strain-displacement relationships are applied. The nonlinear vibration of stiffened plate is reduced to a one-degree-of-freedom nonlinear system by assuming mode shapes. The Multiple scales Lindstedt-Poincare method (MSLP) and Modified Lindstedt-Poincare method (MLP) are used to solve the governing equations of vibration. Numerical examples for stiffened plates with different initial geometric imperfections are presented in order to discuss the influences to the strongly nonlinear free vibration of the stiffened plate. The results showed that: the frequency ratio reduced as the initial geometric imperfections of plate increased, which showed that the increase of the initial geometric imperfections of plate can lead to the decrease of nonlinear effect; by comparing the results calculated by MSLP method, using MS method to study strongly nonlinear vibration can lead to serious mistakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Balendra and N. E. Shanmugam, Free vibration of plate structures by grillage method, J. Sound Vib., 99 (3) (1985) 333–350.

    Article  Google Scholar 

  2. K. M. Liew, Y. Xiang, S. Kitipornchai and J. L. Meek, Formulation of Mindlin-Engesser model for stiffened plate vibration, Comput. Methods Appl. Mech. Eng., 120 (3–4) (1995) 339–353.

    Article  MATH  Google Scholar 

  3. O. K. Bedair and M. S. Troitsky, A study of the fundamental frequency characteristics of eccentrically and concentrically simply supported stiffened plates, Int. J. Mech. Sci., 39 (11) (1997) 1257–1272.

    Article  MATH  Google Scholar 

  4. M. Barik and M. Mukhopadhyay, A new stiffened plate element for the analysis of arbitrary plates, Thin-Walled Struct., 40 (7–8) (2002) 625–639.

    Article  Google Scholar 

  5. G. M. Voros, Buckling and free vibration analysis of stiffened panels, Thin-Walled Struct., 47 (4) (2009) 382–390.

    Article  Google Scholar 

  6. M. Mukhopadhyay, Vibration and stability analysis of stiffened plates by semi-analytic finite difference method-part I: consideration of bending only, J. Sound Vib., 130 (1) (1989) 27–39.

    Article  MATH  Google Scholar 

  7. M. Mukhopadhyay, Vibration and stability analysis of stiffened plates by semi-analytic finite difference method- part II: consideration of bending and axial displacements, J. Sound Vib., 130 (1) (1989) 41–53.

    Article  MATH  Google Scholar 

  8. H. Zeng and C. W. Bert, A differential quadrature analysis of vibration for rectangular stiffened plates, J. Sound Vib., 241 (2) (2001) 247–252.

    Article  Google Scholar 

  9. L. X. Peng, K. M. Liew and S. Kitipornchai, Buckling and free vibration analyses of stiffened plates using the FSDT meshfree method, J. Sound Vib., 289 (3) (2006) 421–449.

    Article  Google Scholar 

  10. E. J. Sapountzakis and V. G. Mokos, An improved model for the dynamic analysis of plates stiffened by parallel beams, Eng. Struct., 30 (6) (2008) 1720–1733.

    Article  Google Scholar 

  11. L. Dozio and M. Ricciardi, Free vibration analysis of ribbed plates by a combined analytical-numerical method, J. Sound Vib., 319 (1–2) (2009) 681–697.

    Article  Google Scholar 

  12. H. A. Xu, J. T. Du and W. L. Li, Vibrations of rectangular plates reinforced by any number of beams of arbitrary lengths and placement angles, J. Sound Vib., 329 (18) (2010) 3759–3779.

    Article  Google Scholar 

  13. M. Haterbouch and R. Benamar, Geometrically nonlinear free vibrations of simply supported isotropic thin circular plates, J. Sound Vib., 280 (3–5) (2005) 903–924.

    Article  Google Scholar 

  14. M. S. Nerantzaki and J. T. Katsikadelis, Nonlinear dynamic analysis of circular plates with varying thickness, Arch. Appl. Mech., 77 (6) (2007) 381–391.

    Article  MATH  Google Scholar 

  15. Z. Celep and K. Guler, Axisymmetric forced vibrations of an elastic free circular plate on a tensionless two-parameter foundation, J. Sound Vib., 301 (3–5) (2007) 495–509.

    Article  Google Scholar 

  16. M. Amabili, Nonlinear vibrations of rectangular plates with different boundary conditions: theory and experiments, Comput. Struct., 82 (31–32) (2004) 2587–2605.

    Article  Google Scholar 

  17. I. V. Andrianov, V. V. Danishevs’Kyy and J. Awrejcewicz, An artificial small perturbation parameter and nonlinear plate vibrations, J. Sound Vib., 283 (3–5) (2005) 561–571.

    Article  Google Scholar 

  18. S. Stoykov and P. Ribeiro, Periodic geometrically nonlinear free vibrations of circular plates, J. Sound Vib., 315 (3) (2008) 536–555.

    Article  Google Scholar 

  19. O. Thomas and S. Bilbao, Geometrically nonlinear flexural vibrations of plates: In-plane boundary conditions and some symmetry properties, J. Sound Vib., 315 (3) (2008) 569–590.

    Article  Google Scholar 

  20. M. K. Singha and R. Daripa, Nonlinear vibration and dynamic stability analysis of composite plates, J. Sound Vib., 328 (4–5) (2009) 541–554.

    Article  MATH  Google Scholar 

  21. J. S. Peng, Y. Q. Yuan, J. Yang and S. Kitipornchai, A semianalytic approach for the nonlinear dynamic response of circular plates, Appl. Math. Model., 33 (12) (2009) 4303–4313.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Yang, Y. X. Hao, W. Zhang and S. Kitipornchai, Nonlinear dynamic response of a functionally graded plate with a through-width surface crack, Nonlinear Dyn., 59 (1–2) (2010) 207–219.

    Article  MATH  Google Scholar 

  23. R. Li et al., Analytic free vibration solutions of rectangular thin plates point-supported at a corner, International Journal of Mechanical Sciences, 96–97 (2015) 199–205.

    Article  Google Scholar 

  24. A. Nikkhoo et al., Vibration of a thin rectangular plate subjected to series of moving inertial loads, Mechanics Research Communications, 55 (1) (2014) 105–113.

    Article  Google Scholar 

  25. P. V. Joshi, N. K. Jain and G. D. Ramtekkar, Effect of thermal environment on free vibration of cracked rectangular plate: An analytical approach, Thin-Walled Structures, 91 (2015) 38–49.

    Article  Google Scholar 

  26. I. D. Breslavsky, M. Amabili and M. Legrand, Physically and geometrically non-linear vibrations of thin rectangular plates, International Journal of Non-Linear Mechanics, 58 (1) (2014) 30–40.

    Article  Google Scholar 

  27. A. Naghsh and M. Azhari, Non-linear free vibration analysis of point supported laminated composite skew plates, International Journal of Non-Linear Mechanics, 76 (2015) 64–76.

    Article  Google Scholar 

  28. S. Razavi and A. Shooshtari, Nonlinear free vibration of magneto-electro-elastic rectangular plates, Composite Structures, 119 (119) (2015) 377–384.

    Article  Google Scholar 

  29. M. E. Hassanabadi, J. V. Amiri and M. R. Davoodi, On the vibration of a thin rectangular plate carrying a moving oscillator, Scientia Iranica. Transaction A, Civil Engineering, 21 (2) (2014) 284–294.

    Google Scholar 

  30. M. E. Hassanabadi, N. K. Attari, A. Nikkhoo and M. Baranadan, An optimum modal superposition approach in the computation of moving mass induced vibrations of a distributed parameter system, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229 (6) (2015) 1015–1028, DOI: 10.1177/09544062 14542968.

    Google Scholar 

  31. K. K. Viswanathan et al., Free vibration of symmetric angle ply truncated conical shells under different boundary conditions using spline method, Journal of Mechanical Science and Technology, 29 (5) (2015) 2073–2080.

    Article  Google Scholar 

  32. C. Camier, C. Touzé and O. Thomas, Non-linear vibrations of imperfect free-edge circular plates and shells, European Journal of Mechanics A/Solids, 28 (3) (2009) 500–515.

    Article  MATH  Google Scholar 

  33. M. Amabili, Theory and experiments for large-amplitude vibrations of rectangular plates with geometric imperfections, Journal of Sound and Vibration, 291 (3–5) (2006) 539–565.

    Article  Google Scholar 

  34. F. Alijani and M. Amabili, Theory and experiments for nonlinear vibrations of imperfect rectangular plates with free edges, Journal of Sound and Vibration, 332 (14) (2013) 3564–3588.

    Article  Google Scholar 

  35. D. Hui, Effects of geometric imperfections on large amplitude vibrations of rectangular plates with hysteresis damping, Journal of Applied Mechanics, 51 (1) (1984) 216–220.

    Article  Google Scholar 

  36. Y. C. Fung, Foundations of solid mechanics, Englewood Cliffs, NJ: Prentice-Hall (1965).

    Google Scholar 

  37. N. Ma, R. Wang and P. Li, Nonlinear dynamic response of a stiffened plate with four edges clamped under primary resonance excitation, Nonlinear Dynamics, 70 (1) (2012) 627–648.

    Article  MathSciNet  Google Scholar 

  38. G. M. Abd EL-Latif, On a problem of modified Lindstedt-Poincare for certain strongly non-linear oscillators, Applied Mathematics and Computation, 152 (3) (2004) 821–836.

    Article  MathSciNet  MATH  Google Scholar 

  39. A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations, John Wiley & Sons, New York (1979).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoting Chen.

Additional information

Recommended by Associate Editor Ohseop Song

Zhaoting Chen is a doctoral candidate pursuing a Ph.D. degree in Bridge and Tunnel Engineering at South China University of Technology, China. His current research area is mainly on the nonlinear dynamics analysis of stiffened plate using analytical method.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Wang, R., Chen, L. et al. Strongly nonlinear free vibration of four edges simply supported stiffened plates with geometric imperfections. J Mech Sci Technol 30, 3469–3476 (2016). https://doi.org/10.1007/s12206-016-0706-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-016-0706-4

Keywords

Navigation