Skip to main content
Log in

A study of the residual stress induced by shot peening for an isotropic material based on Prager’s yield criterion for combined stresses

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Prager developed a yield criterion for a generalized isotropic material that is more capable of predicting material behavior that occurs from combined loading. A less studied topic is the effect of combined loading on the residual stress state. The purpose of the present work is to develop a theoretical model for a residual stress based on Prager’s relation and establish how the predictions are influenced. Prager’s yield criterion which includes the third deviatoric invariant, J3, provides a way to estimate the influence J3 has on the residual stress. The analyzed residual stress originates from shot peening because much experimental data exists to compare and validate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lode W (1926) Versuche ber den Einflu der mittleren Hauptspannung aus das Flieen der Metalle. Zeitschrift fr Physik 36:913–939

    Article  ADS  Google Scholar 

  2. Hill R (1956) The mathematical theory of plasticity. Oxford University Press, London

    Google Scholar 

  3. Taylor GI, Quinney H (1931) The plastic distortion of metals. Philos Trans R Soc Lond A 230:323–361

    Article  ADS  MATH  Google Scholar 

  4. Prager W (1937) Mecanique des solides isotropes au dela du domaine elastique. Mem Sci Math 87:1–66

    Google Scholar 

  5. Prager W (1945) Strain hardening under combined stresses. J Appl Phys 16:837–840

    Article  ADS  MathSciNet  Google Scholar 

  6. Drucker DC (1949) Relation to experiments to mathematical theories of plasticity. J Appl Mech 16:349–357

    MATH  MathSciNet  Google Scholar 

  7. Edelman F, Drucker DC (1951) Some extensions of elementary plasticity theory. J Frankl Inst Eng Appl Math 251:581–605

    Article  MathSciNet  Google Scholar 

  8. Michno MJ, Findley WN (1976) An historical perspective of yield surface investigation for metals. Int J Non Linear Mech 11:59–82

    Article  MATH  Google Scholar 

  9. Hoger A (1986) On the determination of residual stress in an elastic body. J Elast 16:303–324

    Article  MATH  MathSciNet  Google Scholar 

  10. Hoger A (1993) Residual stress in an elastic body: a theory for small strains and arbitrary rotations. J Elast 31:1–24

    Article  MATH  MathSciNet  Google Scholar 

  11. Davis JL, Bae H, Ramulu M (2011) Theoretical and experimental study of coverage in manual shot peening, 11th international conference on shot peening, pp 165–170

  12. Flavenot JF, Nikular A (1977) La mesure des contraintes residuelles: methode de la (Fleche) Methode de la (Source de Constraintes), Les Memories Technique du CETIM, 31

  13. Al-Hassani STS (1981) Mechanical aspects of residual stress development in shot peening, first international conference on shot peening, pp 583–602

  14. Guechichi H, Castex L, Frelat J, Inglebert G (1986) Predicting residual stresses due to shot peening. In: Meguid SA (ed) Impact surface treatment. Elsevier, Applied Science Publishers LTD, New York, pp 11–22

    Google Scholar 

  15. Li JK, Mei Y, Duo W, Renzhi W (1991) Mechanical approach to the residual stress field induced by shot peening. Mater Sci Eng A 147:167–173

    Article  Google Scholar 

  16. Miao HY, Larose S, Perron C, Levesque M (2010) An analytical approach to relate shot peening parameters to almen intensity. Surf Coat Technol 205:2055–2066

    Article  Google Scholar 

  17. Gariepy A, Larose S, Perron C, Levesque M (2011) Shot peening and peen forming finite element modelling—towards a quantitative method. Int J Solids Struct 48:2859–2877

    Article  Google Scholar 

  18. Kobayashi M, Matsui T, Murakami Y (1998) Mechanism of creation of compressive residual stress by shot peening. Int J Fatigue 20:351–357

    Article  Google Scholar 

  19. Gangaraj SMH, Guagliano M (2014) An approach to relate shot peening finite element simulation to the actual coverage. Surf Coat Technol 243:39–45

    Article  Google Scholar 

  20. Nouguier-Lehon C, Zarwel M, Diviani C, Hertz D, Zahouani H, Hoc T (2013) Surface impact analysis in shot peening. Wear 302:1058–1063

    Article  Google Scholar 

  21. Kim T, Lee H, Jung S, Lee JH (2014) A 3D FE model with plastic shot for evaluation of equi-biaxial peening residual stress due to mult-impacts. Surf Coat Technol 206:3125–3136

    Article  Google Scholar 

  22. Liu W, Wu G, Zhai C, Ding W, Korsunsky AM (2013) Grain refinement and fatigue strengthening mechanisms in as-extruded Mg-6Zn-0.5Zr and Mg-10Gd-3Y-0.5Zr magnesium alloys by shot peening. Int J Plast 49:16–35

    Article  Google Scholar 

  23. Schajer GS, Abraham C (2014) Residual stress measurements in finite-thickness materials by hole-drilling. Exp Mech 6:1515–1522

    Article  Google Scholar 

  24. Kunaporn S, Ramulu M, Jenkins MG, Hashish M (2004) Residual stress induced by waterjet peening: a finite element analysis. J Press Vessel Technol 126:333–340

    Article  Google Scholar 

  25. Rees DWA (2011) A theory for swaging of disks and lugs. Meccanica 46:1213–1237

    Article  MATH  MathSciNet  Google Scholar 

  26. Stacey A, Webster GA (1988) Determination of residual stress distributions in autofrettaged tubing. Int J Press Vessels Pip 31:205–220

    Article  Google Scholar 

  27. Iliushin AA (1948) Plasticity. National press of technical and theoretical literature, Moscow Chapter 2

    Google Scholar 

  28. Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge, UK

    Book  MATH  Google Scholar 

  29. Boyce BL, Chen X, Hutchinson JW, Ritchi RO (2001) The residual stress state due to a spherical hard-body impact. Mech Mater 33:441–454

    Article  Google Scholar 

  30. Hasegawa N, Watanabe Y, Fukuyama K (1996) Creation of residual stress by high speed collision of a steel ball. In: Symposium on resent research of shot peening, JSSP, society of shot peening technology of Japan, pp 1–7

  31. Watanabe N, Hasegawa N, Matsumura Y (1995) Simulation of residual stress distribution in shot peening. J Soc Mat Sci Jpn 44:5–110

    Google Scholar 

  32. Schiffner K, Droste gen, Helling C (1999) Simulation of residual stresses by shot peening. Comput Struct 72:329–340

    Article  MATH  Google Scholar 

  33. Meguid SA, Shagal G, Stranart JC (2002) 3D FE analysis of peening of strain-rate sensitive materials using multiple impingement model. Int J Impact Eng 27:119–134

    Article  Google Scholar 

  34. Rouhaud E, Ouakka A, Ould C, Chaboche J, Francois M (2005) Finite elements model of shot peening, effects of constitutive laws of the material, 9th international conference on shot peening, pp 107–112

  35. Hill R, Storakers B, Zdunek AB (1989) A theoretical study of the Brinell Hardness test. Proc R Soc Lond Ser A 423:301–330

    Article  ADS  MATH  Google Scholar 

  36. Chen WF, Han DJ (1988) Plasticity for structural engineers. Springer, New York

    Book  MATH  Google Scholar 

  37. Ohashi Y, Tokuda M (1973) Precise measurement of plastic behaviour of mild steel tubular specimens subjected to combined torsion and axial force. J Mech Phys Solids 21:241–261

    Article  ADS  Google Scholar 

  38. Lubliner J (1990) Plasticity theory. Macmillan, New York

    MATH  Google Scholar 

  39. Muro H, Tokuda M (1976) Residual stresses due to rolling contact. J Jpn Soc Lubr Eng 9:621–625

    Google Scholar 

  40. Cao W, Fathallah R, Castex L (1995) Correlation of almen arc height with residual stresses in shot peening process. Mater Sci Technol 11:967–973

    Article  Google Scholar 

  41. Shen S, Atluri SN (2006) An analytical model for shot peening induced residual stresses. Comput Mater Contin 4:75–85

    Google Scholar 

  42. Honda T, Ramulu M, Kobayashi AS (2006) Fatigue of shot peened 7075–T7351 SENB specimen-A 3-D analysis. Fatigue Fract Engng Mater Struct 29:416–424

    Article  Google Scholar 

  43. Guagliano M (2001) Relating almen intensity to residual stress induced by shot peening: a numerical approach. J Mat Proc Tech 110:277–286

    Article  Google Scholar 

Download references

Acknowledgments

Dr. Davis gratefully acknowledges support provided by the College of Engineering of the University of Washington throughout the duration of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Davis.

Appendix: Equivalent elastic–plastic stresses

Appendix: Equivalent elastic–plastic stresses

Starting from Eq. 8 and the Von Mises yield function

$$\begin{aligned} de_{ij}^p=\bar{G}\partial {f}\frac{\partial {f}}{\partial {\sigma _{ij}}}=\bar{G}s_{ij}^pdJ_2 \end{aligned}$$
(35)

We follow the same procedure outlined in textbook [36] to obtain an expression of \(\bar{G}\) in terms of \(s_{ij}^p\). Begin by taking the product of Eq. 35 with itself

$$\begin{aligned} de_{ij}^pde_{ij}^p=\bar{G}^22J_2dJ_2^2 \end{aligned}$$
(36)

By taking the root of both sides we have

$$\begin{aligned} d\epsilon _i^p=\frac{2}{3}\bar{G}\sigma ^{p}_idJ_2= \frac{4}{9}\bar{G}\sigma ^{p2}_id\sigma _i^p \end{aligned}$$
(37)

Solving for \(\bar{G}\) yields

$$\begin{aligned} \bar{G}=\frac{9}{4}\frac{1}{H_p\sigma _i^{p2}}=\frac{3}{4H_pJ_2} \end{aligned}$$
(38)

Upon substituting this expression into Eq. 35 gives

$$\begin{aligned} de_{ij}^p=s_{ij}^p\bar{G}dJ_2=s_{ij}^p\frac{3a(2n+1)}{4b} \left( \frac{3}{b^2}\right) ^nJ_2^{n-1}dJ_2 \end{aligned}$$
(39)

where an \(H_p=\frac{b}{a(2n+1)}\left( \frac{b^2}{3J_2}\right) ^n\) has been used. Find the first principal plastic strain of Eq. 39 and write the equation in terms of the stress components with \(J_2=\frac{1}{2}s_{ij}^ps_{ij}^p=3s_{11}^{p2}\) and \(dJ_2=s_{ij}^pds_{ij}^p=6s_{11}^pds_{11}^p\)

$$\begin{aligned} de_{11}^p&= \frac{3a(2n+1)}{4b}\left( \frac{3}{b^2}\right) ^n(3s_{11}^{p2})^{n-1}6s_{11}^{p2}ds_{11}^p=\nonumber \\&\frac{6a(2n+1)}{4b}\left( \frac{3}{b^2}\right) ^n(3s_{11}^{p})^{2n}ds_{11}^p \end{aligned}$$
(40)

Integrating this result gives \(e_{11}^p\)

$$\begin{aligned} e_{11}^p=\frac{6a}{4b}\left( \frac{3}{b}\right) ^{2n}(s_{11}^{p})^{2n+1} \end{aligned}$$
(41)

By making use of Eq. 14, we have the following

$$\begin{aligned} \frac{1}{3}(1+\nu )\epsilon _i^p=\frac{1}{3}(1+\nu ) \left[ a\left( \frac{\sigma _i^p}{b}\right) ^{2n+1}\right] =\frac{6a}{4b} \left( \frac{3}{b}\right) ^{2n}(s_{11}^{p})^{2n+1} \end{aligned}$$
(42)

Now, by solving for \(s_{11}^p\) in terms of \(\sigma _i^p\), the desired result is obtained

$$\begin{aligned} s_{11}^p=\left[ \frac{4b}{6a}\left( \frac{b}{3} \right) ^{2n}\frac{1}{3}(1+\nu )a \left( \frac{\sigma _i^p}{b}\right) ^{2n+1} \right] ^{\frac{1}{2n+1}}=\frac{1}{3}\sigma _i^p \end{aligned}$$
(43)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, J., Ramulu, M. A study of the residual stress induced by shot peening for an isotropic material based on Prager’s yield criterion for combined stresses. Meccanica 50, 1593–1604 (2015). https://doi.org/10.1007/s11012-015-0109-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0109-0

Keywords

Navigation