Skip to main content
Log in

Interface crack between isotropic Kirchhoff plates

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this work Kirchhoff plate theory is used to calculate the energy release rate function in delaminated isotropic plates. The approximation is based on the consideration of the equilibrium equations and the displacement continuity between the interface plane of a double-plate model. It is shown that the interface shear stresses are governed by a fourth order partial differential equation system. As an example, a simply supported delaminated plate subjected to a point force is analyzed adopting Lévy plate formulation and the mode-II and mode-III energy release rate distributions along the crack front were calculated by the J-integral. To confirm the analytical results the 3D finite element model of the delaminated plate was created, the energy release rates were calculated by the virtual crack-closure technique and the J-integral. The results indicate a good agreement between analysis and numerical computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells, 2nd edn. McGraw-Hill, New York, Toronto, London

    Google Scholar 

  2. Ventsel E, Krauthammer T (2001) Thin plates and shells—theory, analysis and applications. Dekker, New York, Basel

    Book  Google Scholar 

  3. Rudolph Sz (2004) Theories and applications of plate analysis. John Wiley, Hoboken

    Google Scholar 

  4. Reddy JN (2004) Mechanics of laminated composite plates and shells—theory and analysis. CRC Press, Boca Raton, London, New York, Washington

    Google Scholar 

  5. Allen HG (1969) Analysis and design of structural sandwich panels, 1st edn. Pergamon Press, Oxford, London, Edinburgh, New York, Toronto, Sydney, Paris, Braunschweig

    Google Scholar 

  6. Anderson TL (2005) Fracture mechanics—fundamentals and applications, 3rd edn. CRC Press, Taylor & Francis, Boca Raton, London, New York, Singapore

    MATH  Google Scholar 

  7. Jumel J, Budzik MK, Shanahan MER (2011) Beam on elastic foundation with anticlastic curvature: application to analysis of mode I fracture tests. Eng Fract Mech 78(18):3253–3269

    Article  Google Scholar 

  8. Yoshihara H, Satoh A (2009) Shear and crack tip deformation correction for the double cantilever beam and three-point end-notched flexure specimens for mode I and mode II fracture toughness measurement of wood. Eng Fract Mech 76(3):335–346

    Article  Google Scholar 

  9. Kim S, Kim JS, Yoon H (2011) Experimental and numerical investigations of mode I delamination behaviors of woven fabric composites with carbon, Kevlar and their hybrid fibers. J Bone Miner Metab 12(2):321–329

    MathSciNet  Google Scholar 

  10. Peng L, Zhang J, Zhao L, Bao R, Yang H, Fei B (2011) Mode I delamination growth of multidirectional composite laminates under fatigue loading. J Compos Mater 45(10):1077–1090

    Article  Google Scholar 

  11. Brunner AJ, Flüeler P (2005) Prospects in fracture mechanics of “engineering” laminates. Eng Fract Mech 72:899–908

    Article  Google Scholar 

  12. Brunner AJ, Blackman BRK, Davies P (2008) A status report on delamination resistance testing of polymer-matrix composites. Eng Fract Mech 75:2779–2794

    Article  Google Scholar 

  13. Arrese A, Carbajal N, Vargas G, Mujika F (2010) A new method for determining mode II R-curve by the end-notched flexure test. Eng Fract Mech 77(1):51–70

    Article  Google Scholar 

  14. Argüelles A, Viña J, Canteli AF, Bonhomme J (2011) Influence of resin type on the delamination behavior of carbon fiber reinforced composites under mode-II loading. Int J Damage Mech 20(7):963–977

    Article  Google Scholar 

  15. Plain KP, Tong L (2011) An experimental study on mode I and II fracture toughness of laminates stitched with a one-sided stitching technique. Composites, Part A, Appl Sci Manuf 42(2):203–210

    Article  Google Scholar 

  16. Szekrényes A (2009) Improved analysis of the modified split-cantilever beam for mode III fracture. Int J Mech Sci 51(9–10):682–693

    Article  Google Scholar 

  17. de Morais AB, Pereira AB (2009) Mode III interlaminar fracture of carbon/epoxy laminates using a four-point bending plate test. Composites, Part A, Appl Sci Manuf 40(11):1741–1746

    Article  Google Scholar 

  18. de Morais AB, Pereira AB, de Moura MFSF (2011) Mode III interlaminar fracture of carbon/epoxy laminates using the six-point edge crack torsion (6ECT). Composites, Part A, Appl Sci Manuf 42(11):1793–1799

    Article  Google Scholar 

  19. Davidson BA, Sediles FO (2011) Mixed-mode I-II-III delamination toughness determination via a shear-torsion-bending test. Composites, Part A, Appl Sci Manuf 42(6):589–603

    Article  Google Scholar 

  20. Chatterjee SN (1991) Analysis of test specimens for interlaminar mode II fracture toughness, Part 1. Elastic laminates. J Compos Mater 25:470–493

    Google Scholar 

  21. Bao G, Ho S, Sou Z, Fan B (1992) The role of material orthotropy in fracture specimens for composites. Int J Solids Struct 29(9):1105–1116

    Article  MATH  Google Scholar 

  22. Wang J, Qiao P (2004) Novel beam analysis of end notched flexure specimen for mode-II fracture. Eng Fract Mech 71:219–231

    Article  Google Scholar 

  23. Szekrényes A (2007) Improved analysis of unidirectional composite delamination specimens. Mech Mater 39:953–974

    Article  Google Scholar 

  24. Li S, Wang J, Thouless MD (2004) The effects of shear on delamination in layered materials. J Mech Phys Solids 52:193–214

    Article  ADS  MATH  Google Scholar 

  25. Bennati S, Colleluori M, Corigliano D, Valvo PS (2009) An enhanced beam-theory model of the asymmetric double cantilever beam (ADCB) test for composite laminates. Compos Sci Technol 69(11–12):1735–1745

    Article  Google Scholar 

  26. Andrews MG, Massabò R (2007) The effects of shear and near tip deformations on energy release rate and mode mixity of edge-cracked orthotropic layers. Eng Fract Mech 74:2700–2720

    Article  Google Scholar 

  27. Hsu WH, Chue C-H (2009) Mode III fracture problem of an arbitrarily oriented crack in an FGPM strip bonded to a homogeneous piezoelectric half plane. Meccanica 44:519–534

    Article  MathSciNet  Google Scholar 

  28. Chue C-H, Yeh C-N (2011) Mode III fracture problem of two arbitrarily oriented cracks located within two bonded functionally graded material strips. Meccanica 46:447–469

    Article  MathSciNet  Google Scholar 

  29. Da Silva LFM, Estevez VHC, Chavez FJP (2011) Fracture toughness of a structural adhesive under mixed mode loadings. Materialwissenschaft und Werkstofftechnik 42(5):460–470

    Article  Google Scholar 

  30. Kenane M, Benmedakhene S, Azari Z (2010) Fracture and fatigue study of unidirectional glass/epoxy laminate under different mode of loading. Fatigue Fract Eng Mater Struct 33(5):285–293

    Google Scholar 

  31. Jumel J, Budzik MK, Shanahan MER (2011) Process zone in the single cantilever beam under transverse loading. Part I: Theoretical analysis. Theor Appl Fract Mech 56(1):7–12

    Article  Google Scholar 

  32. Szekrényes A (2009) Interlaminar fracture analysis in the G I G III plane using prestressed composite beams. Composites, Part A, Appl Sci Manuf 40(10):1621–1631

    Article  Google Scholar 

  33. Pereira AB, de Morais AB (2009) Mixed-mode I+III interlaminar fracture of carbon/epoxy laminates. Composites, Part A, Appl Sci Manuf 40(4):518–523

    Article  Google Scholar 

  34. Szekrényes A (2007) Delamination fracture analysis in the G II G III plane using prestressed composite beams. Int J Solids Struct 44(10):3359–3378

    Article  MATH  Google Scholar 

  35. Szekrényes A (2012) Interlaminar fracture analysis in the G II G III plane using prestressed composite beams. Composites, Part A, Appl Sci Manuf 43(1):95–103

    Article  Google Scholar 

  36. Kondo A, Sato Y, Suemasu H, Aoki Y (2011) Fracture resistance of carbon/epoxy composite laminates under mixed-mode II and III failure and its dependence on fracture morphology. Adv Compos Mater 20(5):405–418

    Article  Google Scholar 

  37. Kondo A, Sato Y, Suemasu H, Gouzu K, Aoki Y (2010) Characterization of fracture resistance of carbon/epoxy composite laminates during mixed-mode II and III stable damage propagation. J Jpn Soc Compos Mater 36(5):179–188

    Article  Google Scholar 

  38. Suemasu H, Kondo A, Gozu K, Aoki Y (2010) Novel test method for mixed mode II and III interlaminar fracture toughness. Adv Compos Mater 19(4):349–361

    Article  Google Scholar 

  39. de Morais AB, Pereira AB (2008) Mixed mode II+III interlaminar fracture of carbon/epoxy laminates. Compos Sci Technol 68(9):2022–2027

    Article  Google Scholar 

  40. Marat-Mendes RM, Freitas MM (2010) Failure criteria for mixed mode delamination in glass fibre epoxy composites. Fifteenth International Conference on Composite Structures. Compos Struct 92(9):2292–2298

    Article  Google Scholar 

  41. Szekrényes A (2011) Interlaminar fracture analysis in the G I G II G III space using prestressed composite beams. J Reinf Plast Compos 30(19):1655–1669

    Article  Google Scholar 

  42. Williams JG (1988) On the calculation of energy release rates for cracked laminates. Int J Fract 36:101–119

    Article  Google Scholar 

  43. Suo Z, Hutchinson JW (1990) Interface crack between two elastic layers. Int J Fract 43:1–18

    Article  Google Scholar 

  44. Suo Z (1990) Delamination specimens for orthotropic materials. J Appl Mech 57:627–634

    Article  Google Scholar 

  45. Davidson BD, Hu H, Schapery RA (1995) An analytical crack-tip element for layered elastic structures. J Appl Mech 62:294–305

    Article  MATH  Google Scholar 

  46. Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35:379–386

    Article  Google Scholar 

  47. Cherepanov GP (1997) Methods of fracture mechanics: solid matter physics. Kluwer, Dordrecht, Boston, London

    Book  MATH  Google Scholar 

  48. Murakami T, Sato T (1983) Three-dimensional J-integral calculations of part-through surface crack problems. Comput Struct 17(5–6):731–736

    Article  Google Scholar 

  49. Shivakumar KN, Raju IS (1992) An equivalent domain integral method for three-dimensional mixed-mode fracture problems. Eng Fract Mech 42(6):935–959

    Article  ADS  Google Scholar 

  50. Rigby RH, Aliabadi MH (1998) Decomposition of the mixed-mode J-integral—revisited. Int J Solids Struct 35(17):2073–2099

    Article  MATH  Google Scholar 

  51. Valaire BT, Yong YW, Suhling J, Jang BZ, Zhang SQ (1990) Application of the J-integral to mixed mode fracture of orthotropic composites. Eng Fract Mech 36(3):507–514

    Article  Google Scholar 

  52. Wearing JL, Ahmadi-Brooghani SY (1999) The evaluation of stress intensity factors in plate bending problems using the dual boundary element method. Eng Anal Bound Elem 23:3–19

    Article  MATH  Google Scholar 

  53. Lee LJ, Tu DW (1993) J integral for delaminated composite laminates. Compos Sci Technol 47:185–192

    Article  ADS  Google Scholar 

  54. Wang JTS, Huang JT (1994) Strain-energy release rate of delaminated composite plates using continuous analysis. Compos Eng 4(7):731–744

    Article  Google Scholar 

  55. Bruno D, Greco F (2001) Mixed-mode delamination in plates: a refined approach. Int J Solids Struct 38:9149–9177

    Article  MATH  Google Scholar 

  56. Bruno D, Greco F (2001) Delamination in composite plates: influence of shear deformability on interfacial debonding. Cem Concr Compos 23:33–45

    Article  Google Scholar 

  57. Wang J, Qiao P (2004) Interface crack between two shear deformable elastic layers. J Mech Phys Solids 52:891–905

    Article  ADS  MATH  Google Scholar 

  58. Bonhomme J, Argüelles A, Castrillo MA, Viña J (2010) Computational models for mode I composite fracture failure: the virtual crack closure technique versus the two-step extension method. Meccanica 45(3):297–304

    Article  Google Scholar 

  59. Qiao P, Wang J (2004) Mechanics and fracture of crack tip deformable bi-material interface. Int J Solids Struct 41:7423–7444

    Article  MATH  Google Scholar 

  60. Wang J, Qiao P (2004) On the energy release rate and mode mix of delaminated shear deformable composite plates. Int J Solids Struct 41:2757–2779

    Article  MATH  Google Scholar 

  61. Sankar BV, Sonik V (1995) Pointwise energy release rate in delaminated plates. AIAA J 33(7):1312–1318

    Article  ADS  MATH  Google Scholar 

  62. Davidson BD, Yu L, Hu H (2000) Determination of energy release rate and mode mix in three-dimensional layered structures using plate theory. Int J Fract 105:81–104

    Article  Google Scholar 

  63. Park O, Sankar BV (2002) Crack-tip force method for computing energy release rate in delaminated plates. Compos Struct 55:429–434

    Article  Google Scholar 

  64. Bruno D, Greco F, Lonetti P (2005) A 3D delamination modelling technique based on plate and interface theories for laminated structures. Eur J Mech A, Solids 24(1):127–149

    Article  MATH  Google Scholar 

  65. Suhir E (1986) Stresses in bi-metal thermostats. J Appl Mech 53:657–660

    Article  Google Scholar 

  66. Chou PC, Pagano NJ (1967) Elasticity—tensor, dyadic, and engineering approaches. Van Nostrand, Princeton, Toronto, London

    Google Scholar 

  67. Chatterjee SN (1991) Analysis of test specimens for interlaminar mode II fracture toughness, Part 2. J Compos Mater 25:494–511

    Google Scholar 

  68. Guo SJ (1997) Vibration analysis of stepped thickness plates. J Sound Vib 204(4):645–657

    Article  ADS  Google Scholar 

  69. Yingshi Z (1999) Vibrations of stepped rectangular thin plates on Winkler’s foundation. Appl Math Mech 20(5):568–578

    Article  MATH  Google Scholar 

  70. Chiarelli M, Frediani A (1993) A computation of the three-dimensional J-integral for elastic materials with a view to applications in fracture mechanics. Eng Fract Mech 44(5):763–788

    Article  ADS  Google Scholar 

  71. Hamed MA, Nosier A, Farrahi GH (2006) Separation of delamination modes in composite beams with symmetric delaminations. Mater Des 27:900–910

    Article  Google Scholar 

  72. Garvan F (2002) The maple book. Chapman & Hall/CRC, Boca Raton, London, New York, Washington

    Google Scholar 

  73. Davidson BD, Krüger R, König M (1995) Three-dimensional analysis of center-delaminated unidirectional and multidirectional single-leg bending specimens. Compos Sci Technol 54:385–394

    Article  Google Scholar 

  74. Roque CMC, Rodrigues JD, Ferreira AJM (2012) Analysis of thick plates by local radial basis functions-finite differences method. Meccanica 47:1157–1171

    Article  MathSciNet  Google Scholar 

  75. Batista M (2012) Comparison of Reissner, Mindlin and Reddy plate models with exact three dimensional solution for simply supported isotropic and transverse inextensible rectangular plate. Meccanica 47:257–268

    Article  MathSciNet  Google Scholar 

  76. Xiang S, Kang G-W, Xing B (2012, accepted) A nth-order shear deformation theory for the free vibration analysis on the isotropic plates. Meccanica. doi:10.1007/s11012-012-9563-0

  77. Szekrényes A (2012) Interlaminar stresses and energy release rates for delaminated orthotropic plates. Int J Solids Struct 49:2460–2470

    Article  Google Scholar 

  78. Kumar Y, Lal R (2012) Vibrations of nonhomogeneous orthotropic rectangular plates with bilinear thickness variation resting on Winkler foundation. Meccanica 47:893–915

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and the National Science and Research Fund (OTKA) under Grant No. T34040 (69096). This work is connected to the scientific program of the “Development of quality-oriented and harmonized R+D+I strategy and functional model at BME” project. This project is supported by the New Hungary Development Plan (Project ID: TÁMOP-4.2.1/B-09/1/KMR-2010-0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to András Szekrényes.

Appendix

Appendix

To derive the governing equations for the in-plane forces N x and N y we express first the moments from Eqs. (3), (9) and (10):

$$ \everymath{\displaystyle}\begin{array}{@{}l} M_x = - \frac{{2I_1 }}{ {t^2 }}N_x + \frac{{2I_1 E_1 k_{sh} }}{ t} \\[13pt] \hphantom{M_x =}{}\times\biggl( {\frac{{\partial^2 N_x }}{ {\partial x^2 }} - (1 + \nu )\frac{{\partial^2 N_{xy} }}{ {\partial x\partial y}} + \nu \frac{{\partial^2 N_y }}{ {\partial y^2 }}} \biggr) \\[13pt] M_y = - \frac{{2I_1 }}{ {t^2 }}N_y + \frac{{2I_1 E_1 k_{sh} }}{ t} \\[13pt] \hphantom{M_y =}{}\times \biggl( {\frac{{\partial^2 N_y }}{ {\partial y^2 }} - (1 + \nu )\frac{{\partial^2 N_{xy} }}{ {\partial x\partial y}} + \nu \frac{{\partial^2 N_x }}{ {\partial x^2 }}} \biggr) \end{array} $$
(73)
(74)

Incorporating the equilibrium equations (Eqs. (1), (2)) and the compatibility equation (Eq. (14)) one can obtain the following coupled PDE system:

(75)
(76)

where the constants are:

$$ \everymath{\displaystyle}\begin{array}{@{}l} A_1 = \frac{1}{ 9}\frac{{t^3 (4 + \nu - \nu^2 )}}{ {1 - \nu^2 }} \\[13pt] A_2 = \frac{1}{ 9}\frac{{t^3 (5 - \nu^2 )}}{ {1 - \nu^2 }} \\[13pt] A_3 = - \frac{1}{ {12}} \frac{{t(2 + \nu )}}{ {1 + \nu }}, \qquad A_4 = \frac{1}{ 9}\frac{{t^3 }}{ {1 + \nu }} \\[13pt] A_5 = - \frac{1}{ {12}}\frac{t}{ {1 + \nu }}, \qquad A_6 = \frac{1}{ 9} \frac{{t^3 (3 + \nu )}}{ {1 - \nu^2 }} \\[13pt] A_7 = \frac{1}{9}\frac{{t^3 (3 + \nu^2 )}}{ {1 - \nu^2 }}, \qquad A_8 = A_5 \\[13pt] A_9 = - \nu A_4 ,\qquad A_{10} = - \nu A_8 \end{array} $$
(77)

The above PDE system can be solved by using the Fourier series solutions for N x and N y .

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szekrényes, A. Interface crack between isotropic Kirchhoff plates. Meccanica 48, 507–526 (2013). https://doi.org/10.1007/s11012-012-9611-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-012-9611-9

Keywords

Navigation