Skip to main content

Advertisement

Log in

Irradiation inhibits the maturation and mineralization of osteoblasts via the activation of Nrf2/HO-1 pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) regulates the induction of antioxidant gene expression and protects cells against oxidative injury. However, there are controversial findings regarding the roles of Nrf2 on bone metabolism under oxidative stress. The role of Nrf2 on the differentiation of radiation-exposed osteoblasts is also unclear. We investigated whether Nrf2 negatively or positively affects osteoblast differentiation in response to irradiation. Irradiation inhibited osteoblast differentiation of MC3T3-E1 cells in a dose-dependent manner. This inhibition was evidenced by the irradiation-mediated decreases in bone-like nodule formation, alkaline phosphatase (ALP) activity, calcium accumulation, and expression of osteoblast markers, such as ALP, osteocalcin, osteopontin, bone sialoprotein, osterix, and Runx2. These reductions were accompanied by increased induction of Nrf2 and heme oxygenase-1 (HO-1), accumulation of cellular oxidants, and depletion of antioxidant defense enzymes. siRNA-mediated silencing of Nrf2 markedly reversed the negative effect of irradiation on osteoblast differentiation of the cells, leading to a decrease in HO-1 and an increase in Runx2 levels. Irradiation-mediated decreases in the levels of Runx2 and osteocalcin mRNA, but not of Nrf2 protein, were also significantly inhibited by HO-1 inhibitor, zinc protoporphyrin IX. Furthermore, N-acetyl cysteine restored all of the changes induced by irradiation to near-normal levels in the cells. These results demonstrate that irradiation inhibits osteoblast differentiation and mineralization of MC3T3-E1 cells through the oxidative stress-mediated activation of Nrf2/HO-1 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schultze-Mosgau S, Lehner B, Rödel F, Wehrhan F, Amann K, Kopp J, Thorwarth M, Nkenke E, Grabenbauer G (2005) Expression of bone morphogenic protein 2/4, transforming growth factor-β1, and bone matrix protein expression in healing area between vascular tibia grafts and irradiated bone-experimental model of osteonecrosis. Int J Radiat Oncol Biol Phys 61:1189–1196

    Article  CAS  PubMed  Google Scholar 

  2. King AD, Griffith JF, Abrigo JM, Leung SF, Yau FK, Tse GM, Ahuja AT (2010) Osteoradionecrosis of the upper cervical spine: MR imaging following radiotherapy for nasopharyngeal carcinoma. Eur J Radiol 73:629–635

    Article  PubMed  Google Scholar 

  3. Rana T, Schultz MA, Freeman ML, Biswas S (2012) Loss of Nrf2 accelerates ionizing radiation-induced bone loss by upregulating RANKL. Free Radic Biol Med 53:2298–2307

    Article  CAS  PubMed  Google Scholar 

  4. Dare A, Hachisu R, Yamaguchi A, Yokose S, Yoshiki S, Okano T (1997) Effects of ionizing radiation on proliferation and differentiation of osteoblast-like cells. J Dent Res 76:658–664

    Article  CAS  PubMed  Google Scholar 

  5. He J, Qiu W, Zhang Z, Wang Z, Zhang X, He Y (2011) Effects of irradiation on growth and differentiation-related gene expression in osteoblasts. J Craniofac Surg 22:1635–1640

    Article  PubMed  Google Scholar 

  6. Gal TJ, Munoz-Antonia T, Muro-Cacho CA, Klotch DW (2000) Radiation effects on osteoblasts in vitro: a potential role in osteoradionecrosis. Arch Otolaryngol Head Neck Surg 126:1124–1128

    Article  CAS  PubMed  Google Scholar 

  7. Kondo H, Yumoto K, Alwood JS, Mojarrab R, Wang A, Almeida EA, Searby ND, Limoli CL, Globus RK (2010) Oxidative stress and gamma radiation-induced cancellous bone loss with musculoskeletal disuse. J Appl Physiol 108:152–161

    Article  PubMed Central  PubMed  Google Scholar 

  8. Wambi C, Sanzari J, Wan XS, Nuth M, Davis J, Ko YH, Sayers CM, Baran M, Ware JH, Kennedy AR (2008) Dietary antioxidants protect hematopoietic cells and improve animal survival after total-body irradiation. Radiat Res 169:384–396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Ueno T, Yamada M, Igarashi Y, Ogawa T (2011) N-acetyl cysteine protects osteoblastic function from oxidative stress. J Biomed Mater Res A 99:523–531

    Article  CAS  PubMed  Google Scholar 

  10. Singh PK, Wise SY, Ducey EJ, Fatanmi OO, Elliott TB, Singh VK (2012) α-Tocopherol succinate protects mice against radiation-induced gastrointestinal injury. Radiat Res 177:133–145

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Q, Pi J, Woods CG, Andersen ME (2010) A systems biology perspective on Nrf2-mediated antioxidant response. Toxicol Appl Pharmacol 244:84–97

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Shin SM, Yang JH, Ki SH (2013) Role of the Nrf2-ARE pathway in liver diseases. Oxid Med Cell Longev 2013:763257

    Article  PubMed Central  PubMed  Google Scholar 

  13. Maines MD, Panahian N (2001) The heme oxygenase system and cellular defense mechanisms. Do HO-1 and HO-2 have different functions? Adv Exp Med Biol 502:249–272

    Article  CAS  PubMed  Google Scholar 

  14. Zwerina J, Tzima S, Hayer S, Redlich K, Hoffmann O, Hanslik-Schnabel B, Smolen JS, Kollias G, Schett G (2005) Heme oxygenase 1 (HO-1) regulates osteoclastogenesis and bone resorption. FASEB J 19:2011–2013

    CAS  PubMed  Google Scholar 

  15. Chen JS, Huang PH, Wang CH, Lin FY, Tsai HY, Wu TC, Lin SJ, Chen JW (2011) Nrf-2 mediated heme oxygenase-1 expression, an antioxidant-independent mechanism, contributes to anti-atherogenesis and vascular protective effects of Ginkgo biloba extract. Atherosclerosis 214:301–309

    Article  CAS  PubMed  Google Scholar 

  16. Hinoi E, Fujimori S, Wang L, Hojo H, Uno K, Yoneda Y (2006) Nrf2 negatively regulates osteoblast differentiation via interfering with Runx2-dependent transcriptional activation. J Biol Chem 281:18015–18024

    Article  CAS  PubMed  Google Scholar 

  17. Lin TH, Tang CH, Hung SY, Liu SH, Lin YM, Fu WM, Yang RS (2010) Upregulation of heme oxygenase-1 inhibits the maturation and mineralization of osteoblasts. J Cell Physiol 222:757–768

    CAS  PubMed  Google Scholar 

  18. Son YO, Kook SH, Choi KC, Jang YS, Jeon YM, Kim JG, Lee KY, Kim J, Chung MS, Chung GH, Lee JC (2006) Quercetin, a bioflavonoid, accelerates TNF-α-induced growth inhibition and apoptosis in MC3T3-E1 osteoblastic cells. Eur J Pharmacol 529:24–32

    Article  CAS  PubMed  Google Scholar 

  19. Lei J, Hui D, Huang W, Liao Y, Yang L, Liu L, Zhang Q, Qi G, Song W, Zhang Y, Xiang AP, Zhou Q (2013) Heterogeneity of the biological properties and gene expression profiles of murine bone marrow stromal cells. Int J Biochem Cell Biol 45:2431–2443

    Article  CAS  PubMed  Google Scholar 

  20. Park SS, Kim KA, Lee SY, Lim SS, Jeon YM, Lee JC (2012) X-ray radiation at low doses stimulates differentiation and mineralization of mouse calvarial osteoblasts. BMB Rep 45:571–576

    Article  CAS  PubMed  Google Scholar 

  21. Heo JS, Lee SY, Lee JC (2010) Wnt/β-catenin signaling enhances osteoblastogenic differentiation from human periodontal ligament fibroblasts. Mol Cells 30:449–454

    Article  CAS  PubMed  Google Scholar 

  22. Jeon YM, Kook SH, Rho SJ, Lim SS, Choi KC, Kim HS, Kim JG, Lee JC (2013) Fibroblast growth factor-7 facilitates osteogenic differentiation of embryonic stem cells through the activation of ERK/Runx2 signaling. Mol Cell Biochem 382:37–45

    Article  CAS  PubMed  Google Scholar 

  23. Yu JY, Zheng ZH, Son YO, Shi X, Jang YO, Lee JC (2011) Mycotoxin zearalenone induces AIF- and ROS-mediated cell death through p53- and MAPK-dependent signaling pathways in RAW264.7 macrophages. Toxicol In Vitro 25:1654–1663

    Article  CAS  PubMed  Google Scholar 

  24. Hirata S, Kitamura C, Fukushima H, Nakamichi I, Abiko Y, Terashita M, Jimi E (2010) Low-level laser irradiation enhances BMP-induced osteoblast differentiation by stimulating the BMP/Smad signaling pathway. J Cell Biochem 111:1445–1452

    Article  CAS  PubMed  Google Scholar 

  25. Kim KA, Lee SA, Kim KH, Lee KS, Lee JC (2013) Acteoside inhibits irradiation-mediated decreases in the viability and DNA synthesis of MC3T3-E1 cells. Food Sci Biotechnol 22:845–851

    Article  CAS  Google Scholar 

  26. Choi JY, Lee BH, Song KB, Park RW, Kim IS, Sohn KY, Jo JS, Ryoo HM (1996) Expression patterns of bone-related proteins during osteoblastic differentiation in MC3T3-E1 cells. J Cell Biochem 61:609–618

    Article  CAS  PubMed  Google Scholar 

  27. Neve A, Corrado A, Cantatore FP (2013) Osteocalcin: skeletal and extra-skeletal effects. J Cell Physiol 228:1149–1153

    Article  CAS  PubMed  Google Scholar 

  28. Lee HS, Kim MK, Kim YK, Jung EY, Park CS, Woo MJ, Lee SH, Kim JS, Suh HJ (2011) Stimulation of osteoblast differentiation and mineralization in MC3T3-E1 cells by antler and fermented antler using Cordyceps militaris. J Ethnopharm 133:710–717

    Article  Google Scholar 

  29. Haylock DN, Nilsson SK (2006) Osteopontin: a bridge between bone and blood. Br J Haematol 134:467–474

    Article  CAS  PubMed  Google Scholar 

  30. Ogata Y (2008) Bone sialoprotein and its transcriptional regulatory mechanism. J Periodontal Res 43:127–135

    Article  CAS  PubMed  Google Scholar 

  31. Matsumura S, Hiranuma H, Deguchi A, Maeda T, Jikko A, Fuchihata H (1998) Changes in phenotypic expression of osteoblasts after X irradiation. Radiat Res 149:463–471

    Article  CAS  PubMed  Google Scholar 

  32. Kostyuk SV, Ermakov AV, Alekseeva AY, Smirnova TD, Glebova KV, Efremova LV, Baranova A, Veiko NN (2012) Role of extracellular DNA oxidative modification in radiation induced bystander effects in human endotheliocytes. Mutat Res 729:52–60

    Article  CAS  PubMed  Google Scholar 

  33. Iborra M, Moret I, Rausell F, Bastida G, Aguas M, Cerrillo E, Nos P, Beltrán B (2011) Role of oxidative stress and antioxidant enzymes in Crohn’s disease. Biochem Soc Trans 39:1102–1106

    Article  CAS  PubMed  Google Scholar 

  34. Monga J, Sharma M, Tailor N, Ganesh N (2011) Antimelanoma and radioprotective activity of alcoholic aqueous extract of different species of Ocimum in C(57)BL mice. Pharm Biol 49:428–436

    Article  PubMed  Google Scholar 

  35. Ozgocmen S, Kaya H, Fadillioglu E, Aydogan R, Yilmaz Z (2007) Role of antioxidant systems, lipid peroxidation, and nitric oxide in postmenopausal osteoporosis. Mol Cell Biochem 295:45–52

    Article  CAS  PubMed  Google Scholar 

  36. Kim KA, Kook SH, Song JH, Lee JC (2014) A phenolic acid phenethyl urea derivative protects against irradiation-induced osteoblast damage by modulating intracellular redox state. J Cell Biochem 115:1877–1887

    CAS  PubMed  Google Scholar 

  37. Zhong W, Xia Z, Hinrichs D, Rosenbaum JT, Wegmann KW, Meyrowitz J, Zhang Z (2010) Hemin exerts multiple protective mechanisms and attenuates dextran sulfate sodium-induced colitis. J Pediatr Gastroenterol Nutr 50:132–139

    Article  CAS  PubMed  Google Scholar 

  38. Ahanger AA, Prawez S, Leo MD, Kathirvel K, Kumar D, Tandan SK, Malik JK (2010) Pro-healing potential of hemin: an inducer of heme oxygenase-1. Eur J Pharmacol 645:165–170

    Article  CAS  PubMed  Google Scholar 

  39. Kook YA, Lee SK, Son DH, Kim Y, Kang KH, Cho JH, Kim SC, Kim YS, Lee HJ, Lee SK, Kim EC (2009) Effects of substance P on osteoblastic differentiation and heme oxygenase-1 in human periodontal ligament cells. Cell Biol Int 33:424–428

    Article  CAS  PubMed  Google Scholar 

  40. Kozakowska M, Szade K, Dulak J, Jozkowicz A (2013) Role of heme oxygenase-1 in postnatal differentiation of stem cells: a possible cross-talk with microRNAs. Antioxid Redox Signal 20:1827–1850

    Article  Google Scholar 

  41. Jun JH, Lee SH, Kwak HB, Lee ZH, Seo SB, Woo KM, Ryoo HM, Kim GS, Beak JH (2008) N-acetyl cysteine stimulates osteoblastic differentiation of mouse calvarial cells. J Cell Biochem 103:1246–1255

    Article  CAS  PubMed  Google Scholar 

  42. Jia P, Xu YJ, Zhang ZL, Li K, Li B, Zhang W, Yang H (2012) Ferric ion could facilitate osteoclast differentiation and bone resorption through the production of reactive oxygen species. J Orthop Res 30:1843–1852

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (KRF) funded by the Ministry of Science, ICT and future Planning (NRF-2013R1A2A2A01967207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Chae Lee.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest.

Additional information

Sung-Ho Kook and Kyoung-A Kim have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kook, SH., Kim, KA., Ji, H. et al. Irradiation inhibits the maturation and mineralization of osteoblasts via the activation of Nrf2/HO-1 pathway. Mol Cell Biochem 410, 255–266 (2015). https://doi.org/10.1007/s11010-015-2559-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2559-z

Keywords

Navigation