Skip to main content
Log in

MD2 expression is reduced in large airways of smokers and COPD smokers

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Toll-like receptor 4 (TLR4) signaling requires a number of accessory proteins to initiate a signal. MD-2 is one of the accessory proteins with a relevant role in lipopolysaccharide responses. Although cigarette smoke increases TLR4 expression, TLR4 signaling is altered in smokers and in smokers COPD patients. The main aims of this study were to explore whether MD2 is altered in large and small airways of COPD and of smokers without COPD. The expression of MD2 ex vivo was assessed by immunohistochemistry in surgical specimens from current smokers COPD (s-COPD; n = 14), smokers without COPD (S; n = 7), and from non-smoker non-COPD subjects (C; n = 11. The in vitro effects of cigarette smoke extracts on the MD2 expression in a human bronchial epithelial cell line (16-HBE) were also assessed by flow cytometry. MD2 is reduced in the epithelium and in the submucosa in large airways but not in the epithelium and in the submucosa in small airways of smokers and of s-COPD. The expression of MD2 in the submucosa of the large airways is significantly higher in comparison to the submucosa of the small airways in all the studied groups. In vitro, cigarette smoke is able to increase TLR4 but it reduces MD2 in a dose-dependent manner in bronchial epithelial cells. Cigarette smoke may alter innate immune responses reducing the expression of the MD2, a molecule with an important role in TLR4 signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

TLR4:

Toll-like receptor 4

COPD:

Chronic obstructive pulmonary disease

CSE:

Cigarette smoke extracts

LPS:

Lipopolysaccharide

MD-2:

Myeloid differentiation-2

References

  1. Sender V, Stamme C (2014) Lung cell-specific modulation of LPS-induced TLR4 receptor and adaptor localization. Commun Integr Biol 7:e29053

    Article  PubMed Central  PubMed  Google Scholar 

  2. Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189:1777–1782

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Latz E, Visintin A, Lien E, Fitzgerald KA, Monks BG, Kurt-Jones EA, Golenbock DT, Espevik T (2002) Lipopolysaccharide rapidly traffics to and from the Golgi apparatus with the toll-like receptor 4-MD-2-CD14 complex in a process that is distinct from the initiation of signal transduction. J Biol Chem 277:47834–47843

    Article  CAS  PubMed  Google Scholar 

  4. Ohnishi T, Muroi M, Tanamoto K (2001) N-linked glycosylations at Asn(26) and Asn(114) of human MD-2 are required for toll-like receptor 4-mediated activation of NF-κB by lipopolysaccharide. J Immunol 167:3354–3359

    Article  CAS  PubMed  Google Scholar 

  5. Nagai Y, Akashi S, Nagafuku M, Ogata M, Iwakura Y, Akira S, Kitamura T, Kosugi A, Kimoto M, Miyake K (2002) Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol 3:667–672

    CAS  PubMed  Google Scholar 

  6. Lauer S, Kunde YA, Apodaca TA, Goldstein B, Hong-Geller E (2009) Soluble MD2 increases TLR4 levels on the epithelial cell surface. Cell Immunol 255:8–16

    Article  CAS  PubMed  Google Scholar 

  7. Pace E, Ferraro M, Siena L, Melis M, Montalbano AM, Johnson M, Bonsignore MR, Bonsignore G, Gjomarkaj M (2008) Cigarette smoke increases Toll-like receptor 4 and modifies lipopolysaccharide-mediated responses in airway epithelial cells. Immunology 124:401–411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Pace E, Ferraro M, Uasuf CG, La Grutta S, Liotta G, Giarratano A, Johnson M, Gjomarkaj M (2011) Cilomilast counteracts the effects of cigarette smoke in innate responses of airway epithelial cells. Cell Immunol 268:47–53

    Article  CAS  PubMed  Google Scholar 

  9. Pace E, Ferraro M, Minervini MI, Vitulo P, Pipitone L, Vitulo G, Chiappara P, Siena L, Montalbano AM, Johnson M, Gjomarkaj M (2012) Beta defensin-2 is reduced in central but not in distal airways of smoker COPD patients. PLoS ONE 7:e33601

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Chiappara G, Chanez P, Bruno A, Pace E, Pompeo F, Bousquet J, Bonsignore G, Gjomarkaj M, Bousquet J (2007) p-CREB expression depicts different asthma phenotype. Allergy 62:787–794

    Article  CAS  PubMed  Google Scholar 

  11. Saetta M, Turato G, Baraldo S, Zanin A, Braccioni F, Mapp EC, Maestrelli P, Cavallesco G, Papi A, Fabbri ML (2000) Goblet cell hyperplasia and epithelial inflammation in peripheral airways of smokers with both symptoms of chronic bronchitis and chronic airflow limitation. Am J Respir Crit Care Med 161:1016–1021

    Article  CAS  PubMed  Google Scholar 

  12. Saetta M, Di Stefano A, Turato G, Facchini FM, Corbino L et al (1998) CD8 + T-lymphocytes in peripheral airways of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 157:822–826

    Article  CAS  PubMed  Google Scholar 

  13. Miotto D, Hollenberg MD, Bunnett NW, Papi A, Braccioni F et al (2002) Expression of protease activated receptor-2 (PAR-2) in central airways of smokers and non-smokers. Thorax 57:146–151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Chiappara G, Gjomarkaj M, Virzì A, Sciarrino S, Ferraro M, Bruno A, Montalbano AM, Vitulo P, Minervini MI, Pipitone L, Pace E (2013) The role of p21 Waf1/Cip1 in large airway epithelium in smokers with and without COPD. Biochim Biophys Acta 1832:1473–1481

    Article  CAS  PubMed  Google Scholar 

  15. Chiappara G, Gjomarkaj M, Sciarrino S, Vitulo P, Pipitone L, Pace E (2014) Altered expression of p21, activated caspase-3, and PCNA in bronchiolar epithelium of smokers with and without chronic obstructive pulmonary disease. Exp Lung Res 40:343–353

    Article  CAS  PubMed  Google Scholar 

  16. Siena L, Gjomarkaj M, Elliot J, Pace E, Bruno A, Baraldo S, Saetta M, Bonsignore MR, James A (2011) Reduced apoptosis of CD8+ T-lymphocytes in the airways of smokers with mild/moderate COPD. Respir Med 105:1491–1500

    Article  PubMed  Google Scholar 

  17. Luppi F, Aarbiou J, van Wetering S, Rahman I, de Boer WI, Rabe KF, Hiemstra PS (2005) Effects of cigarette smoke condensate on proliferation and wound closure of bronchial epithelial cells in vitro: role of glutathione. Respir Res 6:140

    Article  PubMed Central  PubMed  Google Scholar 

  18. Cozens AL, Yezzi MJ, Yamaya M, Steiger D, Wagner JA, Garber SS, Chin L, Simon EM, Cutting GR, Gardner P (1992) A transformed human epithelial cell line that retains tight junctions post crisis. In Vitro Cell Dev Biol 28:735–744

    Article  Google Scholar 

  19. Pace E, Di Sano C, Sciarrino S, Scafidi V, Ferraro M, Chiappara G, Siena L, Gangemi S, Vitulo P, Giarratano A, Gjomarkaj M (2014) Cigarette smoke alters IL-33 expression and release in airway epithelial cells. Biochim Biophys Acta 1842:1630–1637

    Article  CAS  PubMed  Google Scholar 

  20. Sender V, Stamme C (2014) Lung-cell specific modulation of LPS-induced TLR4 receptor and adaptor localization. Commun Integr Biol 7:e29053

    Article  PubMed Central  PubMed  Google Scholar 

  21. Kim HM, Park BS, Kim JI, Kim SE, Lee J et al (2007) Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell 130:906–917

    Article  CAS  PubMed  Google Scholar 

  22. Ohto U, Fukase K, Miyake K, Satow Y (2007) Crystal structures of human MD-2 and its complex with anti endotoxic lipid IVa. Science 316:1632–1634

    Article  CAS  PubMed  Google Scholar 

  23. Chun KH, Seong SY (2010) CD14 but not MD2 transmit signals from DAMP. Int Immunopharmacol 10:98–106

    Article  CAS  PubMed  Google Scholar 

  24. Droemann D, Goldmann T, Tiedje T, Zabel P, Dalhoff K et al (2005) Toll-like receptor 2 expression is decreased on alveolar macrophages in cigarette smokers and COPD patients. Respir Res 6:68

    Article  PubMed Central  PubMed  Google Scholar 

  25. Jiang D, Liang J, Fan J, Yu S, Chen S, Luo Y, Prestwich GD, Mascarenhas MM, Garg HG, Quinn DA, Homer RJ, Goldstein DR, Bucala R, Lee PJ, Medzhitov R, Noble PW (2005) Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 11:1173–1179

    Article  CAS  PubMed  Google Scholar 

  26. Zhang X, Shan P, Jiang G, Cohn L, Lee PJ (2006) Toll-like receptor 4 deficiency causes pulmonary emphysema. J Clin Investig 116:3050–3059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Bruscia EM, Zhang PX, Satoh A, Caputo C, Medzhitov R, Shenoy A, Egan ME, Krause DS (2011) Abnormal trafficking and degradation of TLR4 underlie the elevated inflammatory response in cystic fibrosis. J Immunol 186:6990–6998

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Hogg JC (2004) Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet 364:709–721

    Article  PubMed  Google Scholar 

  29. Ganesan S, Comstock AT, Sajjan US (2013) Barrier function of airway tract epithelium. Tissue Barriers 1:e24997

    Article  PubMed Central  PubMed  Google Scholar 

  30. Zhang W, Case S, Bowler RP, Martin RJ, Jiang D et al (2011) () Cigarette smoke modulates PGE(2) and host defence against Moraxella catarrhalis infection in human airway epithelial cells. Respirology 16:508–516

    Article  PubMed  Google Scholar 

  31. Curtis JL, Freeman CM, Hogg JC (2007) The immunopathogenesis of chronic obstructive pulmonary disease: insights from recent research. Proc Am Thorac Soc 4:512–521

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Sethi S, Murphy TF (2001) Bacterial infection in chronic obstructive pulmonary disease in 2000: a state-of-the-art review. Clin Microbiol Rev 14:336–363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Koulenti D, Rello J (2006) Gram-negative bacterial pneumonia: aetiology and management. Curr Opin Pulm Med 12:198–204

    CAS  PubMed  Google Scholar 

  34. Pace E, Giarratano A, Ferraro M, Bruno A, Siena L et al (2011) TLR4 upregulation underpins airway neutrophilia in smokers with chronic obstructive pulmonary disease and acute respiratory failure. Hum Immunol 72:54–62

    Article  CAS  PubMed  Google Scholar 

  35. O’Donnell R, Breen D, Wilson S, Djukanovic R (2006) Inflammatory cells in the airways in COPD. Thorax 61:448–454

    Article  PubMed Central  PubMed  Google Scholar 

  36. Kim V, Rogers TJ, Criner GJ (2008) New concepts in the pathobiology of chronic obstructive pulmonary disease. Proc Am Thorac Soc 5:478–485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Italian National Research Council. Elisabetta Pace and Maria Ferraro designed the study. Elisabetta Pace performed the statistical analysis of the data, wrote the manuscript, and declares that she has had access to and takes responsibility for the integrity of the data and the accuracy of the data analysis. Maria Ferraro, Giuseppina Chiappara, and Serena Di Vincenzo performed the experiments of the study and participated to the interpretation of the data. Patrizio Vitulo contributed to the patient selection. Loredana Pipitone collected and managed biological samples. Mark Gjomarkaj contributed to the interpretation of the data and to writing out the manuscript.

Conflict of interest

The Authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Pace.

Additional information

Elisabetta Pace and Maria Ferraro have equally contributed to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pace, E., Ferraro, M., Chiappara, G. et al. MD2 expression is reduced in large airways of smokers and COPD smokers. Mol Cell Biochem 407, 289–297 (2015). https://doi.org/10.1007/s11010-015-2476-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2476-1

Keywords

Navigation