Skip to main content
Log in

MiR-21 overexpression improves osteoporosis by targeting RECK

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Osteoporosis is a kind of metabolic bone disorder. MicroRNA-21 (miR-21) has been proven to play an important role in bone formation, whereas its role in osteoporosis is unclear. In the present study, miR-21 expression was inhibited by TNF-α in mesenchymal stem cells (MSCs). TNF-α induced cell apoptosis, and inhibited cell proliferation and differentiation of MSCs. Whereas the effect was reversed by miR-21 mimics. Expression of reversion-inducing cysteine-rich protein with Kazal motifs (RECK) which is a predicted target of miR-21 was inhibited by miR-21 mimics. A luciferase reporter gene assay showed that miR-21 directly bound to RECK 3′-UTR. The effect of TNF-α on MSCs was reversed by RECK siRNA which was consistent with miR-21 mimics. The expression of MT1-MMP was inhibited by TNF-α and enhanced by RECK siRNA and miR-21 mimics. For the in vivo study, an osteoporosis model (OVX) was established by bilateral oophorectomy in mice. The expression of miR-21 decreased and RECK increased in the OVX mice. When treated with lentiviral RECK shRNA, the osteocalcin concentration and alkaline phosphate activity of the OVX mice decreased. The bone mineral density of the right femur mid-diaphysis was improved by RECK shRNA. Collectively, miR-21 modulated the osteoporosis by targeting RECK. These results emphasize the role of miR-21 during osteoporosis and suggest RECK might be a new medical target for osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MSCs:

Mesenchymal stem cells

RECK:

Reversion-inducing cysteine-rich protein with Kazal motifs

OVX:

Ovariectomy

MMP:

Matrix metalloproteinase

ALP:

Alkaline phosphate

BMD:

Bone mineral density

References

  1. Weinstein RS, Manolagas SC (2000) Apoptosis and osteoporosis. Am J Med 108:153–164

    Article  CAS  PubMed  Google Scholar 

  2. Rana TM (2007) Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 8:23–36. doi:10.1038/nrm2085

    Article  CAS  PubMed  Google Scholar 

  3. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  4. van Wijnen AJ, van de Peppel J, van Leeuwen JP, Lian JB, Stein GS, Westendorf JJ, Oursler MJ, Im HJ, Taipaleenmaki H, Hesse E, Riester S, Kakar S (2013) MicroRNA functions in osteogenesis and dysfunctions in osteoporosis. Curr Osteoporos Rep 11:72–82. doi:10.1007/s11914-013-0143-6

    Article  PubMed Central  PubMed  Google Scholar 

  5. Jia J, Tian Q, Ling S, Liu Y, Yang S, Shao Z (2013) miR-145 suppresses osteogenic differentiation by targeting Sp7. FEBS Lett 587:3027–3031. doi:10.1016/j.febslet.2013.07.030

    Article  CAS  PubMed  Google Scholar 

  6. Shi K, Lu J, Zhao Y, Wang L, Li J, Qi B, Li H, Ma C (2013) MicroRNA-214 suppresses osteogenic differentiation of C2C12 myoblast cells by targeting Osterix. Bone 55:487–494. doi:10.1016/j.bone.2013.04.002

    Article  CAS  PubMed  Google Scholar 

  7. Li E, Zhang J, Yuan T, Ma B (2014) MiR-143 suppresses osteogenic differentiation by targeting Osterix. Mol Cell Biochem 390:69–74. doi:10.1007/s11010-013-1957-3

    Article  CAS  PubMed  Google Scholar 

  8. Kang IH, Jeong BC, Hur SW, Choi H, Choi SH, Ryu JH, Hwang YC, Koh JT (2015) MicroRNA-302a stimulates osteoblastic differentiation by repressing COUP-TFII expression. J Cell Physiol 230:911–921. doi:10.1002/jcp.24822

    Article  CAS  PubMed  Google Scholar 

  9. Zhang F, Yang Z, Cao M, Xu Y, Li J, Chen X, Gao Z, Xin J, Zhou S, Zhou Z, Yang Y, Sheng W, Zeng Y (2014) MiR-203 suppresses tumor growth and invasion and down-regulates MiR-21 expression through repressing Ran in esophageal cancer. Cancer Lett 342:121–129. doi:10.1016/j.canlet.2013.08.037

    Article  CAS  PubMed  Google Scholar 

  10. Gong C, Nie Y, Qu S, Liao JY, Cui X, Yao H, Zeng Y, Su F, Song E, Liu Q (2014) miR-21 induces myofibroblast differentiation and promotes the malignant progression of breast phyllodes tumors. Cancer Res 74:4341–4352. doi:10.1158/0008-5472.CAN-14-0125

    Article  CAS  PubMed  Google Scholar 

  11. Li B, Ren S, Li X, Wang Y, Garfield D, Zhou S, Chen X, Su C, Chen M, Kuang P, Gao G, He Y, Fan L, Fei K, Zhou C, Schmit-Bindert G (2014) MiR-21 overexpression is associated with acquired resistance of EGFR-TKI in non-small cell lung cancer. Lung Cancer 83:146–153. doi:10.1016/j.lungcan.2013.11.003

    Article  PubMed  Google Scholar 

  12. Liu J, Zhu H, Yang X, Ge Y, Zhang C, Qin Q, Lu J, Zhan L, Cheng H, Sun X (2014) MicroRNA-21 is a novel promising target in cancer radiation therapy. Tumour Biol 35:3975–3979. doi:10.1007/s13277-014-1623-8

    Article  CAS  PubMed  Google Scholar 

  13. Yang N, Wang G, Hu C, Shi Y, Liao L, Shi S, Cai Y, Cheng S, Wang X, Liu Y, Tang L, Ding Y, Jin Y (2013) Tumor necrosis factor alpha suppresses the mesenchymal stem cell osteogenesis promoter miR-21 in estrogen deficiency-induced osteoporosis. J Bone Miner Res 28:559–573. doi:10.1002/jbmr.1798

    Article  CAS  PubMed  Google Scholar 

  14. Mei Y, Bian C, Li J, Du Z, Zhou H, Yang Z, Zhao RC (2013) miR-21 modulates the ERK-MAPK signaling pathway by regulating SPRY2 expression during human mesenchymal stem cell differentiation. J Cell Biochem 114:1374–1384. doi:10.1002/jcb.24479

    Article  CAS  PubMed  Google Scholar 

  15. Fan X, Wang E, Wang X, Cong X, Chen X (2014) MicroRNA-21 is a unique signature associated with coronary plaque instability in humans by regulating matrix metalloproteinase-9 via reversion-inducing cysteine-rich protein with Kazal motifs. Exp Mol Pathol 96:242–249. doi:10.1016/j.yexmp.2014.02.009

    Article  CAS  PubMed  Google Scholar 

  16. Ziyan W, Shuhua Y, Xiufang W, Xiaoyun L (2011) MicroRNA-21 is involved in osteosarcoma cell invasion and migration. Med Oncol 28:1469–1474. doi:10.1007/s12032-010-9563-7

    Article  PubMed  Google Scholar 

  17. Mannello F, Tonti GA, Bagnara GP, Papa S (2006) Role and function of matrix metalloproteinases in the differentiation and biological characterization of mesenchymal stem cells. Stem Cells 24:475–481. doi:10.1634/stemcells.2005-0333

    Article  CAS  PubMed  Google Scholar 

  18. Oh J, Takahashi R, Kondo S, Mizoguchi A, Adachi E, Sasahara RM, Nishimura S, Imamura Y, Kitayama H, Alexander DB, Ide C, Horan TP, Arakawa T, Yoshida H, Nishikawa S, Itoh Y, Seiki M, Itohara S, Takahashi C, Noda M (2001) The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell 107:789–800

    Article  CAS  PubMed  Google Scholar 

  19. Wu T, Xie M, Wang X, Jiang X, Li J, Huang H (2012) miR-155 modulates TNF-alpha-inhibited osteogenic differentiation by targeting SOCS1 expression. Bone 51:498–505. doi:10.1016/j.bone.2012.05.013

    Article  CAS  PubMed  Google Scholar 

  20. Raisz LG (2005) Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Investig 115:3318–3325. doi:10.1172/JCI27071

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Clowes JA, Riggs BL, Khosla S (2005) The role of the immune system in the pathophysiology of osteoporosis. Immunol Rev 208:207–227. doi:10.1111/j.0105-2896.2005.00334.x

    Article  CAS  PubMed  Google Scholar 

  22. Nanes MS (2003) Tumor necrosis factor-alpha: molecular and cellular mechanisms in skeletal pathology. Gene 321:1–15

    Article  CAS  PubMed  Google Scholar 

  23. Dong J, Cui X, Jiang Z, Sun J (2013) MicroRNA-23a modulates tumor necrosis factor-alpha-induced osteoblasts apoptosis by directly targeting Fas. J Cell Biochem 114:2738–2745. doi:10.1002/jcb.24622

    Article  CAS  PubMed  Google Scholar 

  24. Wang Y, Gao X, Wei F, Zhang X, Yu J, Zhao H, Sun Q, Yan F, Yan C, Li H, Ren X (2014) Diagnostic and prognostic value of circulating miR-21 for cancer: a systematic review and meta-analysis. Gene 533:389–397. doi:10.1016/j.gene.2013.09.038

    Article  CAS  PubMed  Google Scholar 

  25. Xu LF, Wu ZP, Chen Y, Zhu QS, Hamidi S, Navab R (2014) MicroRNA-21 (miR-21) regulates cellular proliferation, invasion, migration, and apoptosis by targeting PTEN, RECK and Bcl-2 in lung squamous carcinoma, Gejiu City, China. PLoS One 9:e103698. doi:10.1371/journal.pone.0103698

    Article  PubMed Central  PubMed  Google Scholar 

  26. Wang N, Zhang CQ, He JH, Duan XF, Wang YY, Ji X, Zang WQ, Li M, Ma YY, Wang T, Zhao GQ (2013) MiR-21 down-regulation suppresses cell growth, invasion and induces cell apoptosis by targeting FASL, TIMP3, and RECK genes in esophageal carcinoma. Dig Dis Sci 58:1863–1870. doi:10.1007/s10620-013-2612-2

    Article  CAS  PubMed  Google Scholar 

  27. Ren W, Wang X, Gao L, Li S, Yan X, Zhang J, Huang C, Zhang Y, Zhi K (2014) MiR-21 modulates chemosensitivity of tongue squamous cell carcinoma cells to cisplatin by targeting PDCD4. Mol Cell Biochem 390:253–262. doi:10.1007/s11010-014-1976-8

    Article  CAS  PubMed  Google Scholar 

  28. Li C, Li C, Yue J, Huang X, Chen M, Gao J, Wu B (2012) miR-21 and miR-101 regulate PLAP-1 expression in periodontal ligament cells. Mol Med Rep 5:1340–1346. doi:10.3892/mmr.2012.797

    CAS  PubMed  Google Scholar 

  29. Holmbeck K, Bianco P, Pidoux I, Inoue S, Billinghurst RC, Wu W, Chrysovergis K, Yamada S, Birkedal-Hansen H, Poole AR (2005) The metalloproteinase MT1-MMP is required for normal development and maintenance of osteocyte processes in bone. J Cell Sci 118:147–156. doi:10.1242/jcs.01581

    Article  CAS  PubMed  Google Scholar 

  30. Toth M, Chvyrkova I, Bernardo MM, Hernandez-Barrantes S, Fridman R (2003) Pro-MMP-9 activation by the MT1-MMP/MMP-2 axis and MMP-3: role of TIMP-2 and plasma membranes. Biochem Biophys Res Commun 308:386–395

    Article  CAS  PubMed  Google Scholar 

  31. Manduca P, Castagnino A, Lombardini D, Marchisio S, Soldano S, Ulivi V, Zanotti S, Garbi C, Ferrari N, Palmieri D (2009) Role of MT1-MMP in the osteogenic differentiation. Bone 44:251–265. doi:10.1016/j.bone.2008.10.046

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weigong Zhao or Yanhong Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Dong, Y., Wu, C. et al. MiR-21 overexpression improves osteoporosis by targeting RECK. Mol Cell Biochem 405, 125–133 (2015). https://doi.org/10.1007/s11010-015-2404-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2404-4

Keywords

Navigation