Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Alpha-fetoprotein contributes to THP-1 cell invasion and chemotaxis via protein kinase and Gi-protein-dependent pathways

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

This article was retracted on 20 February 2023

This article has been updated

Abstract

Alpha-fetoprotein (AFP) for long was known as immunomodulator and tumor marker having multifaceted actions on the activity of normal and transformed cells. In present study, we have investigated the involvement of AFP in regulation of THP-1 cell line invasion and underlying mechanisms. Treatment with human recombinant AFP causes up-regulation of MMP9 expression, chemotaxis and calcium mobilization, and increases invasion through Matrigel, with no significant impact on THP-1 cell growth or viability. Using small molecule inhibitors, we have shown that the rhAFP-induced MMP9 expression depends on the activation of ERK1,2, JNK and Akt kinases, with the involvement of NFκB and likely, AP-1 transcription factors. In contrast, inhibition of p38 kinase, but not of JNK, had dramatic suppressive effect on the rhAFP-triggered chemotaxis. In addition, rhAFP-induced MMP9 expression and calcium response were completely blocked by pertussis toxin, indicating that Gi-protein-coupled receptor(s) has a mediatory role in these processes. CCR5 chemokine receptor is the only known Gi-protein binding to AFP. The action of CCR5 inhibitor Maraviroc results in partial suppression of MMP9 up-regulation and calcium response suggesting that CCR5 might be involved in these effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Mizejewski GJ (2004) Biological roles of alpha-fetoprotein during pregnancy and perinatal development. Exp Biol Med (Maywood) 229:439–463

    Article  CAS  PubMed  Google Scholar 

  2. Mizejewski GJ (2011) Therapeutic use of human alpha-fetoprotein in clinical patients: is a cancer risk involved? Int J Cancer 128:239–242. doi:10.1002/ijc.25292

    Article  CAS  PubMed  Google Scholar 

  3. Jacobson HI, Bennett JA, Mizejewski GJ (1990) Inhibition of estrogen-dependent breast cancer growth by a reaction product of alpha-fetoprotein and estradiol. Cancer Res 50:415–420

    CAS  PubMed  Google Scholar 

  4. Arora N, Madhusudhana S (2011) Spontaneous regression of hepatocellular cancer: case report and review of literature. Gastrointest Cancer Res 4:141–143

    PubMed  PubMed Central  Google Scholar 

  5. Dudich E, Semenkova L, Dudich I, Denesyuk A, Tatulov E, Korpela T (2006) Alpha-fetoprotein antagonizes X-linked inhibitor of apoptosis protein anticaspase activity and disrupts XIAP-caspase interaction. FEBS J 273:3837–3849. doi:10.1111/j.1742-4658.2006.05391.x

    Article  CAS  PubMed  Google Scholar 

  6. Li P, Wang SS, Liu H, Li N, McNutt MA, Li G, Ding HG (2011) Elevated serum alpha fetoprotein levels promote pathological progression of hepatocellular carcinoma. World J Gastroenterol 17:4563–4571. doi:10.3748/wjg.v17.i41.4563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ishigami S, Natsugoe S, Nakashima H, Tokuda K, Nakajo A, Okumura H, Matsumoto M, Nakashima S, Hokita S, Aikou T (2006) Biological aggressiveness of alpha-fetoprotein (AFP)-positive gastric cancer. Hepatogastroenterology 53:338–341

    PubMed  Google Scholar 

  8. Li M, Li H, Li C, Wang S, Jiang W, Liu Z, Zhou S, Liu X, McNutt MA, Li G (2011) Alpha-fetoprotein: a new member of intracellular signal molecules in regulation of the PI3 K/AKT signaling in human hepatoma cell lines. Int J Cancer 128:524–532. doi:10.1002/ijc.25373

    Article  CAS  PubMed  Google Scholar 

  9. Peng SY, Chen WJ, Lai PL, Jeng YM, Sheu JC, Hsu HC (2004) High alpha-fetoprotein level correlates with high stage, early recurrence and poor prognosis of hepatocellular carcinoma: significance of hepatitis virus infection, age, p53 and beta-catenin mutations. Int J Cancer 112:44–50. doi:10.1002/ijc.20279

    Article  CAS  PubMed  Google Scholar 

  10. Takahashi Y, Ohta T, Mai M (2004) Angiogenesis of AFP producing gastric carcinoma: correlation with frequent liver metastasis and its inhibition by anti-AFP antibody. Oncol Rep 11:809–813

    CAS  PubMed  Google Scholar 

  11. Dudich E, Dudich I, Semenkova L, Benevolensky S, Morozkina E, Marchenko A, Zatcepin S, Dudich D, Soboleva G, Khromikh L, Roslovtceva O, Tatulov E (2012) Engineering of the Saccharomyces cerevisiae yeast strain with multiple chromosome-integrated genes of human alpha-fetoprotein and its high-yield secretory production, purification, structural and functional characterization. Protein Expr Purif 84:94–107. doi:10.1016/j.pep.2012.04.008

    Article  CAS  PubMed  Google Scholar 

  12. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  13. Lopatina T, kalinina N, Karagyaur M, Stambolsky D, Rubina K, Revischin A, Pavlova G, Parfyonova Y, Tkachuk V (2011) Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo. PLoS One. doi:10.1371/journal.pone.0017899

    Article  PubMed  PubMed Central  Google Scholar 

  14. Menshikov M, Torosyan N, Elizarova E, Plakida K, Vorotnikov A, Parfyonova Y, Stepanova V, Bobik A, Berk B, Tkachuk V (2006) Urokinase induces matrix metalloproteinase-9/gelatinase B expression in THP-1 monocytes via ERK1/2 and cytosolic phospholipase A2 activation and eicosanoid production. J Vasc Res 43:482–490. doi:10.1159/000095248

    Article  CAS  PubMed  Google Scholar 

  15. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    Article  CAS  PubMed  Google Scholar 

  16. Bjorklund M, Koivunen E (2005) Gelatinase-mediated migration and invasion of cancer cells. Biochim Biophys Acta 1755:37–69. doi:10.1016/j.bbcan.2005.03.001

    Article  CAS  PubMed  Google Scholar 

  17. Mook OR, Frederiks WM, Van Noorden CJ (2004) The role of gelatinases in colorectal cancer progression and metastasis. Biochim Biophys Acta 1705:69–89. doi:10.1016/j.bbcan.2004.09.006

    Article  CAS  PubMed  Google Scholar 

  18. Potapovich AI, Pastore S, Kostyuk VA, Lulli D, Mariani V, De Luca C, Dudich EI, Korkina LG (2009) Alpha-fetoprotein as a modulator of the pro-inflammatory response of human keratinocytes. Br J Pharmacol 158:1236–1247. doi:10.1111/j.1476-5381.2009.00401.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liang OD, Korff T, Eckhardt J, Rifaat J, Baal N, Herr F, Preissner KT, Zygmunt M (2004) Oncodevelopmental alpha-fetoprotein acts as a selective proangiogenic factor on endothelial cell from the fetomaternal unit. J Clin Endocrinol Metab 89:1415–1422

    Article  CAS  PubMed  Google Scholar 

  20. Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J, Young DB, Barbosa M, Mann M, Manning A, Rao A (1997) IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 278:860–866

    Article  CAS  PubMed  Google Scholar 

  21. Mizejewski GJ (2011) Review of the putative cell-surface receptors for alpha-fetoprotein: identification of a candidate receptor protein family. Tumour Biol 32:241–258. doi:10.1007/s13277-010-0134-5

    Article  CAS  PubMed  Google Scholar 

  22. Li MS, Li PF, He SP, Du GG, Li G (2002) The promoting molecular mechanism of alpha-fetoprotein on the growth of human hepatoma Bel7402 cell line. World J Gastroenterol 8:469–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moro R, Tamaoki T, Wegmann TG, Longenecker BM, Laderoute MP (1993) Monoclonal antibodies directed against a widespread oncofetal antigen: the alpha-fetoprotein receptor. Tumour Biol 14:116–130

    Article  CAS  PubMed  Google Scholar 

  24. Olson TS, Ley K (2002) Chemokines and chemokine receptors in leukocyte trafficking. Am J Physiol Regul Integr Comp Physiol 283:R7–R28. doi:10.1152/ajpregu.00738.2001

    Article  CAS  PubMed  Google Scholar 

  25. Atemezem A, Mbemba E, Marfaing R, Vaysse J, Pontet M, Saffar L, Charnaux N, Gattegno L (2002) Human alpha-fetoprotein binds to primary macrophages. Biochem Biophys Res Commun 296:507–514

    Article  CAS  PubMed  Google Scholar 

  26. Lisi L, Tramutola A, De Luca A, Navarra P, Dello Russo C (2012) Modulatory effects of the CCR5 antagonist maraviroc on microglial pro-inflammatory activation elicited by gp120. J Neurochem 120:106–114. doi:10.1111/j.1471-4159.2011.07549.x

    Article  CAS  PubMed  Google Scholar 

  27. Oppermann M, Mack M, Proudfoot AE, Olbrich H (1999) Differential effects of CC chemokines on CC chemokine receptor 5 (CCR5) phosphorylation and identification of phosphorylation sites on the CCR5 carboxyl terminus. J Biol Chem 274:8875–8885

    Article  CAS  PubMed  Google Scholar 

  28. Gouwy M, Struyf S, Berghmans N, Vanormelingen C, Schols D, Van Damme J (2011) CXCR4 and CCR5 ligands cooperate in monocyte and lymphocyte migration and in inhibition of dual-tropic (R5/X4) HIV-1 infection. Eur J Immunol 41:963–973. doi:10.1002/eji.201041178

    Article  CAS  PubMed  Google Scholar 

  29. Tanaka T, Bai Z, Srinoulprasert Y, Yang BG, Hayasaka H, Miyasaka M (2005) Chemokines in tumor progression and metastasis. Cancer Sci 96:317–322. doi:10.1111/j.1349-7006.2005.00059.x

    Article  CAS  PubMed  Google Scholar 

  30. Mizejewski GJ (2002) Biological role of alpha-fetoprotein in cancer: prospects for anticancer therapy. Expert Rev Anticancer Ther 2:709–735. doi:10.1586/14737140.2.6.709

    Article  CAS  PubMed  Google Scholar 

  31. Pollard LC, Murray J, Moody M, Stewart EJ, Choy EH (2007) A randomised, double-blind, placebo-controlled trial of a recombinant version of human alpha-fetoprotein (MM-093) in patients with active rheumatoid arthritis. Ann Rheum Dis 66:687–689. doi:10.1136/ard.2006.059436

    Article  CAS  PubMed  Google Scholar 

  32. Suzuki Y, Zeng CQ, Alpert E (1992) Isolation and partial characterization of a specific alpha-fetoprotein receptor on human monocytes. J Clin Invest 90:1530–1536. doi:10.1172/JCI116021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Torres JM, Darracq N, Uriel J (1992) Membrane proteins from lymphoblastoid cells showing cross-affinity for alpha-fetoprotein and albumin. Isolation and characterization. Biochim Biophys Acta 1159:60–66

    Article  CAS  PubMed  Google Scholar 

  34. Seddiki N, Rabehi L, Benjouad A, Saffar L, Ferriere F, Gluckman JC, Gattegno L (1997) Effect of mannosylated derivatives on HIV-1 infection of macrophages and lymphocytes. Glycobiology 7:1229–1236

    Article  CAS  PubMed  Google Scholar 

  35. Mira E, Lacalle RA, Gonzalez MA, Gomez-Mouton C, Abad JL, Bernad A, Martinez AC, Manes S (2001) A role for chemokine receptor transactivation in growth factor signaling. EMBO Rep 2:151–156. doi:10.1093/embo-reports/kve027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fitzgerald ML, Moore KJ, Freeman MW, Reed GL (2000) Lipopolysaccharide induces scavenger receptor A expression in mouse macrophages: a divergent response relative to human THP-1 monocyte/macrophages. J Immunol 164:2692–2700

    Article  CAS  PubMed  Google Scholar 

  37. Gough PJ, Gordon S (2000) The role of scavenger receptors in the innate immune system. Microbes Infect 2:305–311

    Article  CAS  PubMed  Google Scholar 

  38. Post SR, Gass C, Rice S, Nikolic D, Crump H, Post GR (2002) Class A scavenger receptors mediate cell adhesion via activation of G(i/o) and formation of focal adhesion complexes. J Lipid Res 43:1829–1836

    Article  CAS  PubMed  Google Scholar 

  39. Gialeli C, Theocharis AD, Karamanos NK (2011) Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 278:16–27. doi:10.1111/j.1742-4658.2010.07919.x

    Article  CAS  PubMed  Google Scholar 

  40. Annabi B, Currie JC, Moghrabi A, Beliveau R (2007) Inhibition of HuR and MMP-9 expression in macrophage-differentiated HL-60 myeloid leukemia cells by green tea polyphenol EGCg. Leuk Res 31:1277–1284. doi:10.1016/j.leukres.2006.10.001

    Article  CAS  PubMed  Google Scholar 

  41. Gaurnier-Hausser A, Rothman VL, Dimitrov S, Tuszynski GP (2008) The novel angiogenic inhibitor, angiocidin, induces differentiation of monocytes to macrophages. Cancer Res 68:5905–5914. doi:10.1158/0008-5472.CAN-07-6179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Solinas G, Germano G, Mantovani A, Allavena P (2009) Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 86:1065–1073. doi:10.1189/jlb.0609385

    Article  CAS  PubMed  Google Scholar 

  43. Dudich E, Semenkova L, Gorbatova E, Dudich I, Khromykh L, Tatulov E, Grechko G, Sukhikh G (1998) Growth-regulative activity of human alpha-fetoprotein for different types of tumor and normal cells. Tumour Biol 19:30–40

    Article  CAS  PubMed  Google Scholar 

  44. Sowa ME, Bennett EJ, Gygi SP, Harper JW (2009) Defining the human deubiquitinating enzyme interaction landscape. Cell 138:389–403. doi:10.1016/j.cell.2009.04.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by International Scientific and Technical Center (project #3808) and by Russian Foundation of Basic Research (projects #09-04-01664, 11-04-01850 and 12-04-00989). We thank Tatyana Bushueva and Yury Romanov for helping in performing experiments and preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Menshikov.

About this article

Cite this article

Zubkova, E., Semenkova, L., Dudich, E. et al. RETRACTED ARTICLE: Alpha-fetoprotein contributes to THP-1 cell invasion and chemotaxis via protein kinase and Gi-protein-dependent pathways. Mol Cell Biochem 379, 283–293 (2013). https://doi.org/10.1007/s11010-013-1650-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1650-6

Keywords

Navigation