Skip to main content

Advertisement

Log in

Review of the putative cell-surface receptors for alpha-fetoprotein: identification of a candidate receptor protein family

  • Review
  • Published:
Tumor Biology

Abstract

The identification of a receptor for alpha-fetoprotein (AFP) has long been sought in the field of medicine. The uptake and endocytosis of AFP by rat tumor cells in 1984 sparked a series of confirmatory reports and the original studies were then extended to include multiple tumor types in rats, mice, and humans. The following year, French investigators partially characterized the binding properties of the AFP receptor, but they were not able to purify the receptor. It was not until 1991–1992 that an AFP receptor was partially purified and characterized from both human monocytes and breast cancer cells. By 1993, a monoclonal antibody had been raised against the AFP receptor produced from a breast cancer extract with claims that the receptor was a widespread (universal) oncofetal biomarker for cancer. However, that receptor has yet to be cloned and/or purified due to its complex multimeric binding interactions and associations. The present report will review the literature of the multiple putative AFP receptors described to date, the cellular uptake and endocytosis of AFP, and the biochemical characterization of these putative cell-surface proteins. In addition, evidence derived from computer modeling, proteolytic degradation patterns, and amino acid sequence analysis will be presented in a proposed identification of a family of multi-ligand binding receptors; this family fits many, if not most, of the criteria required for an AFP receptor. The purposed receptor protein family is tentatively identified as the Scavenger receptors which comprise several classes of single- and double-pass integral transmembrane proteins. Present data do not support the concept that the AFP receptor is a “universal” tumor receptor and/or biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mizejewski GJ. Alpha-fetoprotein structure and function: relevance to isoforms, epitopes, and conformational variants. Exp Biol Med Maywood. 2001;226:377–408.

    CAS  PubMed  Google Scholar 

  2. Mizjewswki G (2009) Mapping on structure-function peptide sites on the human alpha-fetoprotein amino acid sequence. Atlas of Genetics and Cytogenetics in Oncology and Haematology. Deep Insight Section, 1–65.

  3. Naidu S, Peterson ML, Spear BT. Alpha-fetoprotein related gene (ARG): a new member of the albumin gene family that is no longer functional in primates. Gene. 2009;449(1–2):95–102.

    PubMed  Google Scholar 

  4. Mizejewski GJ. Physiology of alpha-fetoprotein as a biomarker for perinatal distress: relevance to adverse pregnancy outcome. Exp Biol Med. 2007;232(8):993–1004.

    CAS  Google Scholar 

  5. Mizejewski GJ. Biological role of AFP in cancer: prospects for anticancer therapy. Expert Rev Anticancer Ther. 2002;2(6):89–115.

    Google Scholar 

  6. Li MS, Li PF, He SP, Du GG, Li G. The promoting molecular mechanism of alpha-fetoprotein on the growth of human hepatoma Bel7402 cell line. World J Gastroenterol. 2002;8:469–75.

    CAS  PubMed  Google Scholar 

  7. Li MS, Li PF, Yang FY, He SP, Du GG, Li G. The intracellular mechanism of alpha-fetoprotein promoting the proliferation of NIH 3 T3 cells. Cell Res. 2002;12:151–6.

    PubMed  Google Scholar 

  8. Benno RH, Williams TH. Evidence for intracellular localization of AFP in the developing rat brain. Brain Res. 1978;142–6.

  9. Moro R, Uriel J. Early localization of AFP in the developing nervous system of the chicken. Onco-develop. Biol Méd. 1981;2:391–9.

    CAS  Google Scholar 

  10. Uriel J, Trojan J, Dubauch P, Pineira A. Intracellular AFP and albumin in the developing nervous system of the baboon. Pathol Biol. 1982;30:79–84.

    CAS  PubMed  Google Scholar 

  11. Toran-Alleran CD. Coexistence of α-fetoprotein, albumin and transferring immunoreactivity in neurons of the developing mouse brain. Nature. 1980;286:733–6.

    Google Scholar 

  12. Trojan J, Uriel J. Immunocytochemical localization of AFP and serum albumin in ecto-, meso-, and endodermal tissue derivatives of the developing rat. Oncodevelop Biol Med. 1982;3:13–22.

    CAS  Google Scholar 

  13. Poupon UJ, MF GM. Alpha-fetoprotein uptake by cloned cell lines derived from a nickel-induced rat rhabdomysosarcoma. Br J Cancer. 1983;48:261–9.

    PubMed  Google Scholar 

  14. Hajeri-Germond M, Trojan J, Uriel J, Hau JJ. In vitro uptake of exogenous AFP by chicken dorsal root ganglia. Dev Neurosci. 1983;6:11–5.

    Google Scholar 

  15. Uriel J, Failly-Crepin C, Villacampa MJ, Pineiro A, Geuskens. Incorporation of AFP by the MCF-7 human breast cancer cell line. Tumor Biol. 1984;5:41–51.

    CAS  Google Scholar 

  16. Villacampa MJ, Moro R, Naval J, Failly-Crepin C, Lampreave F, Uriel J. Alpha-fetoprotein receptors in a human breast cancer cell line. Biochem Biophys Res Commun. 1984;122:1322–7.

    CAS  PubMed  Google Scholar 

  17. Hajere-Germond M, Naval J, Trojan J, Uriel J. The uptake of alpha-fetoprotein by C-1300 mouse neuroblastoma cells. Brit J Cancer. 1985;51:791–7.

    Google Scholar 

  18. Geuskens M, Naval J, Uriel J. Ultra-structural studies of the intracellular translocation of endocytosed alpha-fetoprotein (AFP) by cytochemistry and of the uptake of 3 H-arachidonic acid bound to AFP by autoradiography in rat rhabdomyosarcoma cells. J Cell Physiol. 1986;128:389–96.

    CAS  PubMed  Google Scholar 

  19. Laborda J, Naval J, Allouche M, Calvo M, Georgoulias V, Mishal Z, et al. Specific uptake of alpha-fetoprotein by malignant human lymphoid cells. Int J Cancer. 1987;40:314–8.

    CAS  PubMed  Google Scholar 

  20. Geuskens M, Torres JM, Esteban C, Uriel J. Morphological characterization of the pathway of endocytosis and intracellular processing of transferrin and alpha-fetoprotein in human T-lymphocytes stimulated with phytohemagglutinin (PHA). Eur J Cell Biol. 1989;418–27.

  21. Laborda J, Naval J, Calvo M, Lampreave F, Uriel J. Alpha-fetoprotein and albumin uptake by mouse tissues during development. Biol Neonate. 1989;56:332–41.

    CAS  PubMed  Google Scholar 

  22. Torres JM, Geuskens M, Uriel J. Receptor-mediated endocytosis and recycling of alpha-fetoprotein in human β-lymphoma and T-leukemia cells. Int J Cancer. 1991;47:110–7.

    CAS  PubMed  Google Scholar 

  23. Esteban C, Geuskens M, Uriel J. Activation of an alpha-fetoprotein (AFP)/receptor autocrine loop in HT-29 human colon carcinoma cells. Int J Cancer. 1991;49:425–30.

    CAS  PubMed  Google Scholar 

  24. Hajeri-Germond M, Trojan J, Uriel J. Alpha-fetoprotein uptake by differentiating neuroretinal structures of the chick embryo. Dev Neurosci. 1991;13:164–70.

    CAS  PubMed  Google Scholar 

  25. Geuskens J, Dupressoir T, Uriel J. A study, by electron microscopy, of the specific uptake of alpha-fetoprotein by mouse embryonic fibroblasts in relation to in vitro aging, and my human mammary epithelial tumour cells in comparison with normal donors’ cells. J Submicrosc Cytol Pathol. 1991;23:59–66.

    CAS  PubMed  Google Scholar 

  26. Esteban C, Trojan J, Macho A, Mishal Z, Lafarge-Frayssinet Ch, Uriel J. Activation of an AFP/receptor pathway in human normal and malignant peripheral blood mononuclear cells. Leukemia. 1993;7:1807–16.

    CAS  PubMed  Google Scholar 

  27. Lorenzo HC, Geuskens M, Macho A, et al. Alpha-fetoprotein binding and uptake by primary cultures of human skeletal muscle. Tumor Biol. 1996;17:251–60.

    CAS  Google Scholar 

  28. Brownbill P, Edwards D, Jones C, Mahendran D, Owen D, Sibley C, et al. Mechanisms of alphafetoprotein transfer in the perfused human placental cotyledon from uncomplicated pregnancy. J Clin Invest. 1995;96:2220–6.

    CAS  PubMed  Google Scholar 

  29. Posypanova GA, Gorokhovets NV, Makarov VA, Savvateeva LV, Kireeva NN, Severin SE, et al. Recombinant alpha-fetoprotein C-terminal fragment: the new recombinant vector for targeted delivery. J Drug Target. 2008;16:321–8.

    CAS  PubMed  Google Scholar 

  30. Uriel J, Trojan J, Moro R, Pineiro A. Intracellular uptake of alpha-fetoprotein: a marker of neural differentiation. Ann NY Acad Sci. 1983;417:321–9.

    CAS  PubMed  Google Scholar 

  31. Villacampa MJ, Lampreave F, Calvo M, Naval J, Pineiro A, Uriel J. Incorporation of radiolabelled alpha-fetoprotein in the brain and other tissues of the developing rat. Dev Brain Res. 1984;12:77–82.

    CAS  Google Scholar 

  32. Uriel J, Faivre-Bauman A, Trojan J, Doiret D. Immunocytochemical demonstration of alpha-fetoprotein uptake by primary cultures of fetal hemisphere cells from mouse brain. Neurosci Lett. 1981;27:171–5.

    CAS  PubMed  Google Scholar 

  33. Uriel J, Naval J, Laborda J. Alpha-fetoprotein mediated transfer of arachidonic acid into cultured cloned cells derived from a rat rhabdomyosarcoma. J Biol Chem. 1987;262:2579–3585.

    Google Scholar 

  34. Alava MA, Sturralde M, Lampreave F, Pineiro A. Specific uptake of alpha-fetoprotein and albumin by rat Morris 777 Hepatoma cells. Tum Biol. 1999;20:52–64.

    CAS  Google Scholar 

  35. Naval J, Villacampa MJ, Goguel AF, Uriel J. Cell type specific receptors for AFP in a mouse T-lymphoma cell line. Proc Nat Acad Sci USA. 1985;82:3301–4.

    CAS  PubMed  Google Scholar 

  36. Biddle W, Sarcione EJ. Specific cytoplasmic alpha-fetoprotein binding protein in MCF-7 human breast cancer cells and primary breast cancer tissue. Breast Cancer Res Treat. 1987;10:279–86.

    CAS  PubMed  Google Scholar 

  37. Torres JM, Laborda J, Naval J, Darracq N, Mishal Z, Uriel J. Expression of alpha-fetoprotein receptors by human T-lymphocytes during blastic transformation. Mol Immunol. 1989;26:851–7.

    CAS  PubMed  Google Scholar 

  38. Suzuki Y, Zeng CQY, Alpert E. Isolation and characterization of a specific alpha-fetoprotein receptor on human monocytes. J Clin Invest. 1992;90:1530–6.

    CAS  PubMed  Google Scholar 

  39. Torres JM, Geuskens M, Uriel J. Activated human T lymphocytes express albumin binding proteins which cross-react with alpha-fetoprotein. Eur J Cell Biol. 1992;57:222–8.

    CAS  PubMed  Google Scholar 

  40. Torres JM, Carracq N, Uriel J. Membrane proteins from lymphoblastoid cells showing cross-affinity for alpha-fetoprotein and albumin: Isolation and characterization. Biochem Biophys Acta. 1992;1159:60–6.

    CAS  PubMed  Google Scholar 

  41. Laderoute MP (1991) The characterization of a novel, widespread, PNA-reactive tumor associated antigen: The alpha-fetoprotein receptor/binding protein. Ph.D. Thesis, Faculty of Graduate Studies and Research, University of Alberta, Canada, pp 1–256.

  42. Laderoute MP, Wilans D, Wegmann T, Longenecker M. The identification, isolation, and characterization of a 67-kilodalton, PNA-reactive autoantigen commonly expressed in human adenocarcinomas. Anticancer Res. 1994;14:1233–46.

    CAS  PubMed  Google Scholar 

  43. Moro R, Tamaoki T, Wegmann TG, Longnecker BM, Laderoute MP. Monoclonal antibodies directed against a widespread oncofetal antigen: The alpha-fetoprotein receptor. Tumor Biol. 1993;14:116–30.

    CAS  Google Scholar 

  44. Kanevsky VY, Pozdnyakova LP, Aksenova OA, Severin SE, Karakov VY, Severin ES. Isolation and characterization of AFP-binding proteins from tumor and fetal tissues. Biochem Mol Biol Internl. 1997;41:1643–151.

    Google Scholar 

  45. Schnitzer JE, Sung A, Horst R, Bravo J. Preferential interaction of albumin binding proteins, gp30 and gp18 with conformationally modified albumins. J Biol Chem. 1992;267:24544–53.

    CAS  PubMed  Google Scholar 

  46. Schnitzer JE, Bravo J. High affinity binding, endocytosis, and degradation of conformationally modified albumins. J Biol Chem. 1993;268:7562–70.

    CAS  PubMed  Google Scholar 

  47. Schnitzer JE, Carley WW, Palade GE. Albumin interacts specifically with a 60 kD microvascular endothelial glycoprotein. Proc Natl AcadSci USA. 1988;85:6773–7.

    CAS  Google Scholar 

  48. Sage H, Johnson C, Bornstem P. Characterization of a novel serum albumin-binding glycoprotein secreted by endothelial cells in culture. J Biol Chem. 1984;259:3993–4007.

    CAS  PubMed  Google Scholar 

  49. Dresel HA, Friedrich E, Via DP, Schettler G, Sinn H. Characterization of binding sites for acetylated low density lipoprotein in the rat liver in vivo and in vitro. EMBO J. 1985;4:1157–62.

    CAS  PubMed  Google Scholar 

  50. Horiuchi S, Takata K, Maeda H, Morino Y. Scavenger function of sinusoidal liver cells. Acetylated low-density lipoprotein is endocytosed via a route distinct from formaldehyde-treated serum albumin. J Biol Chem. 1985;260:53–6.

    CAS  PubMed  Google Scholar 

  51. Horiuchi S, Takata K, Morino Y. Purification of a receptor for formaldehyde-treated serum albumin from rat liver. J Biol Chem. 1985;260:482–8.

    CAS  PubMed  Google Scholar 

  52. Dresel HA, Friedrich E, Via DP, Sinn H, Ziegler R, Schettler G. Binding of acetylated low density lipoprotein and maleylated bovine serum albumin to the rat liver: one or two receptors? EMBO J. 1987;6:319–26.

    CAS  PubMed  Google Scholar 

  53. Kodama T, Reddy P, Kishimoto C, Krieger M. Purification and characterization of a bovine acetyl low density lipoprotein receptor. Proc Natl Acad Sci USA. 1988;85:9238–42.

    CAS  PubMed  Google Scholar 

  54. Ghinea N, Fixman A, Alexandru D, Popov D, Hasu M, Ghitescu L, et al. Identification of albumin-binding proteins in capillary endothelial cells. J Cell Biol. 1988;107:231–9.

    CAS  PubMed  Google Scholar 

  55. Ghinea N, Eskenasy M, Simionescu M, Simionescu N. Endothelial albumin binding proteins are membrane-associated components exposed on the cell surface. J Biol Chem. 1989;264:4755–8.

    CAS  PubMed  Google Scholar 

  56. Moroianu J, Simionescu M. Affinity isolation of albumin-binding proteins using nitrocellulose-bound albumin. Eur J Cell Biol. 1989;50:447–52.

    CAS  PubMed  Google Scholar 

  57. Ottnad E, Via DP, Sinn H, Friedrich E, Ziegler R, Dresel HA. Binding characteristics of reduced hepatic receptors for acetylated low-density lipoprotein and maleylated bovine serum albumin. Biochem J. 1990;265:689–98.

    CAS  PubMed  Google Scholar 

  58. Moroianu J, Hillebrand A, Simionescu M. Albumin binding proteins are highly expressed in actively proliferating fetal and adult tissues. Eur J Cell Biol. 1990;53:20–6.

    CAS  PubMed  Google Scholar 

  59. Ottnad E, Via DP, Frubis J, Sinn H, Friedrich E, Ziegler R, et al. Differentiation of binding sites on reconstituted hepatic scavenger receptors using oxidized low-density lipoprotein. Biochem J. 1992;281:745–51.

    CAS  PubMed  Google Scholar 

  60. Schnitzer JE, Oh P. Albondin-mediated capillary permeability to albumin. Differential role of receptors in endothelial transcytosis and endocytosis of native and modified albumins. J Biol Chem. 1994;269:6072–82.

    CAS  PubMed  Google Scholar 

  61. Tiruppathi C, Song W, Bergenfeldt M, Sass P, Malik AB. Gp60 activation mediates albumin transcytosis in endothelial cells by tyrosine kinase-dependent pathway. J Biol Chem. 1997;272:25968–75.

    CAS  PubMed  Google Scholar 

  62. Bito R, Hino S, Baba A, Tanaka M, Watabe H, Kawabata H. Degradation of oxidative stress-induced denatured albumin in rat liver endothelial cells. Am J Physiol Cell Physiol. 2005;289:531–42.

    Google Scholar 

  63. Schnitzer JE, Ulmer JB, Palade GE. A major endothelial plasmalemmal sialoglycoprotein, gp60, is immunologically related to glycophorin. Proc Natl Acad Sci USA. 1990;87:6843–7.

    CAS  PubMed  Google Scholar 

  64. Mizejewski GJ. Alpha-fetoprotein signal sequences A proposed mechanism for localization and organelle targeting. J Theor Biol. 1995;176:103–13.

    CAS  PubMed  Google Scholar 

  65. Ockner RK, Weisigner RA, Gollan JL. Hepatic uptake of albumin-bound substances: the albumin receptor concept. Amer J Physiol. 1983;245:613–8. Gastrointest. Liver Physiol Section.

    Google Scholar 

  66. Uriel J, Torres JM, Anel A. Carrier protein-mediated enhancement of fatty acids transfer into human T-lymphocytes. Biochim Biophys Acta. 1994;1220:231–40.

    CAS  PubMed  Google Scholar 

  67. Torres JM, Anel A, Uriel J. AFP-mediated uptake of fatty acids by human T-lymphocytes. J Cell Physiol. 1992;150:456–62.

    CAS  PubMed  Google Scholar 

  68. Esteban C, Terrier P, Frayssinet C, Uriel J. Expression of the alpha-fetoprotein gene in human breast cancer. Tumour Biol. 1996;17(5):299–305.

    CAS  PubMed  Google Scholar 

  69. Newby D, Dalgliesh G, Lyall F, Aitken DA. Alphafetoprotein and alphafetoprotein receptor expression in the normal human placenta at term. Placenta. 2005;26:190–200.

    CAS  PubMed  Google Scholar 

  70. Butler EL, Dashe JS, Ramus RM. Association between maternal serum alpha-fetoprotein and adverse outcomes in pregnancies with placenta previa. Obstet Gynecol. 2001;97:35–8.

    CAS  PubMed  Google Scholar 

  71. Koster EL, Dashe JS, McIntire DD, Ramus RM. Association of maternal serum alpha-fetoprotein with persistent placenta previa. J Matern Fetal Neonatal Med. 2004;16:3–7.

    CAS  PubMed  Google Scholar 

  72. Duc-Goiran P, Mignot TM, Robert B, Machavoine F, Mondon F, Hagnere AM, et al. Expression and localization of alpha-fetoprotein mRNA and protein in human early villous trophoblasts. Placenta. 2006;27:812–21.

    CAS  PubMed  Google Scholar 

  73. Lafuste P, Robert B, Mondon F, Danan JL, Rossi B, Duc-Goiran P, et al. Alpha-fetoprotein gene expression in early and full-term human trophoblast. Placenta. 2002;23:600–12.

    CAS  PubMed  Google Scholar 

  74. Lambot N, Lybaert P, Boom A, Delogne-Desnoeck J, Vanbellinghen AM, Graff G, et al. Evidence for a clathrin-mediated recycling of albumin in human term placenta. Biol Reprod. 2006;75:90–7.

    CAS  PubMed  Google Scholar 

  75. Pelikan DM, Kanhai HH, De Groot-Swings GM, Mesker WE, Tanke HJ, Scherjon SA. Fetomaternal hemorrhage in relation to chorionic villus sampling revisited. Prenat Diagn. 2006;26:201–5.

    PubMed  Google Scholar 

  76. Palm NW, Medzhitov R. Pattern recognition receptors and control of adaptive immunity. Immunol Rev. 2009;227:221–33.

    CAS  PubMed  Google Scholar 

  77. Greaves DR, Gordon S. Recent insights into the biology of macrophage scavenger receptors. J Lipid Res. 2005;46:11–20.

    CAS  PubMed  Google Scholar 

  78. Cao WM, Murao K, Imachi H, Yu X, Abe H, Yamauchi A, et al. A mutant high-density lipoprotein receptor inhibits proliferation of human breast cancer cells. Cancer Res. 2004;64(4):1514–21.

    Google Scholar 

  79. Hu W, Zhen X, Xiong B, Wang B, Zhang W, Zhou W. CXCR6 is expressed in human prostate cancer in vivo and is involved in the in vitro invasion of PC3 and LNCap cells. Cancer Sci. 2008;99(7):1362–9.

    CAS  PubMed  Google Scholar 

  80. Czokalo M, Tomasiak M. Alpha-fetoprotein inhibits aggregation of human platelets. Haematologia. 1989;22:11–8.

    CAS  PubMed  Google Scholar 

  81. Korporaal SJ, Van Eck M, Adelmeijer J, Ljsseldjk M, Out R, Lisman T, et al. Platelet activation by oxidized low density lipoprotein is mediated by CD36 and scavenger receptor-A. Arterioscler Thromb Vasc Biol. 2007;27:2476–83.

    CAS  PubMed  Google Scholar 

  82. Liang M, Zhang P, Fu J. Up-regulation of LOX-1 expression by TNF-alpha promotes trans-endothelial migration of MDA-MB-231 breast cancer cells. Cancer Lett. 2007;258:31–7.

    CAS  PubMed  Google Scholar 

  83. Butterstein GM, Morrison J, Mizejewski GJ. Effect of alpha-fetoprotein and derived peptides on insulin-and estrogen-induced fetotoxicity. Fetal Deagn Ther. 2003;125:1080–9.

    Google Scholar 

  84. Marwali MR, Hu CP, Mohandas B, Dandapat A, Deonikar P, Chen J, et al. Modulation of ADP-induced platelet activation by aspirin and pravastatin: role of lectin-like oxidized low-density lipoprotein receptor-1, nitric oxide, oxidative stress, and inside-out integrin signaling. J Pharmacol Exp Ther. 2007;322:1324–32.

    CAS  PubMed  Google Scholar 

  85. Butterstein GM, Mizejewski GJ. Alpha-fetoprotein inhibits frog metamorphosis: implications for protein motif conservation. Comp Biochem Physiol. 1999;124A:39–45.

    CAS  Google Scholar 

  86. Jurgens JB, Gartland LA, DuPasquier L, Horton JD, Gobel TW, Cooper MD. Identification of a candidate CD5 homologue in the amphibian Xenopus laevis. J Immunol. 1995;155:4218–23.

    CAS  PubMed  Google Scholar 

  87. Terentiev AA, Moldogazieva NT. Cell adhesion proteins and alpha-fetoprotein. Similar structural motifs as prerequisites for common functions. Biochemistry. 2007;72:920–35.

    CAS  PubMed  Google Scholar 

  88. Post SR, Gass C, Rice S, Nikolic D, Crump H, Post GR. Class A scavenger receptors mediate cell adhesion via activation of Gi/e and formation of focal adhesion complexes. J Lipid Res. 2002;43:1829–36.

    CAS  PubMed  Google Scholar 

  89. Liang OD, Korff T, Eckhardt J, Rifaat J, Baal N, Herr F, et al. Oncodevelopmental alphafetoprotein acts as a selective proangiogenic factor on endothelial cells from the fetomaternal unit. J Clin Endocrinol Metabolism. 2004;89:1415–22.

    CAS  Google Scholar 

  90. Hu C, Dandapat A, Mehta JL. Angiotensin II induces capillary formation from endothelial cells via the LOX-1 dependent redox-sensitive pathway. Hypertension. 2007;50:952–7.

    CAS  PubMed  Google Scholar 

  91. Selman L, Skjodt K, Nielsen O, Floridon C, Holmskov U, Hansen S. Expression and tissue localization of collectin placenta 1 (CL-P1, SRCL) in human tissues. Mol Immunol. 2008;45:3278–88.

    CAS  PubMed  Google Scholar 

  92. Mizejewski GJ, Vonnegut M, Jacobsen HI. Estradiol-activated alpha-fetoprotein suppressed the uterotropic response to estrogens. Proc. Soc. Natl Acad. Sci USA. 1983;2733–7.

  93. Keenihan SN, Robertson SA. Diversity in phenotype and steroid hormone dependence in dendritic cells and macrophages in the mouse uterus. Biol Reprod. 2004;70:1562–72.

    CAS  PubMed  Google Scholar 

  94. Bartha JL, Romero-Carmona R, Comino-Delgado R, Arce F, Arrabal J. AFP and hematopoietic growth factors in amniotic fluids. Obstet Gynecol. 2000;96:588–92.

    CAS  PubMed  Google Scholar 

  95. Holm TM, Braun A, Trigatti BL, Brugnara C, Sakamoto M, Krieger M, et al. Failure of red blood cell maturation in mice with defects in the high-density lipoprotein receptor SR-Bl. Blood. 2002;99:1817–24.

    CAS  PubMed  Google Scholar 

  96. Seralini GE, Stora C. Inhibition of murine genital function by alpha-fetoprotein. Tumour Biol. 1997;8:292–3.

    Google Scholar 

  97. Binder RJ, Vatner R, Srivastava P. The heat-shock protein receptors: some answers and more questions. Tissue Antigens. 2004;64:442–51.

    CAS  PubMed  Google Scholar 

  98. Koths K, Taylor E, Halenback R, Casipit C, Wang A. Cloning and characterization of a human Mac-2-binding protein, a new member of the superfamily defined by the macrophage scavenger receptor cysteine-rich domain. J Biol Chem. 1993;268(19):14245–1429.

    CAS  PubMed  Google Scholar 

  99. Nakayama T, Hieshima K, Izawa D, Tatsumi Y, Kanamaru A, Yoshie O. Cutting edge: profile of chemokine receptor expression on human plasma cells accounts for their efficient recruitment to target tissues. J Immunol. 2003;170(3):1136–40.

    CAS  PubMed  Google Scholar 

  100. Tran-Thanh D, Done SJ. The role of stromal factors in breast tumorigenicity. Am J Pathol. 2010;176:1072–4.

    PubMed  Google Scholar 

  101. Satoh H, Kiyota E, Terasake Y, Sawamura T, Takagi K, Mizuta H, et al. Expression and localization of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in murine and human placentas. J Histochem Cytochem. 2008;56:773–84.

    CAS  PubMed  Google Scholar 

  102. Huang Y, Zhu XY, Du MR, Li DJ. Human trophoblasts recruited T-lymphocytes and monocytes into deciduas by secretion of chemokine CXCL16 and interaction with CXCR6 in the first-trimester pregnancy. J Immunol. 2008;180:2367–75.

    CAS  PubMed  Google Scholar 

  103. Elshourbagy NA, Li X, Terrett J, VanHorn S, Gross MS, Adamou JE, et al. Molecular characterization of a human scavenger receptor, human MARCO. Eur J Biochem. 2000;267:919–26.

    CAS  PubMed  Google Scholar 

  104. Sahoo D, Drover VA. The role of scavenger receptors in signaling, inflammation, and atherosclerosis. In: Cheema SK, editors. Biochemistry of atherosclerosis. New York: Springer; 2006, p. 53–69.

  105. Leito JT, Ligtenberg AJ, Naxmi K, de Blieck-Hogervorst JM, Veerman EC, Nieuw Amerongen AV. A common binding motif for various bacteria of the bacteria-binding peptide SRCRP2 of DMBT1/gp-340/salivary agglutinin. Bio Chem. 2008;389:1193–200.

    CAS  Google Scholar 

  106. Bikker FJ, Ligtenberg AJ, End C, Renner M, Blaich S, Lyer S, et al. Bacteria binding by DMBT1/SAGgp-340 is confined to the VEVLXXXXW motif in its scavenger receptor cysteine-rich domains. J Biol Chem. 2004;279:47699–703.

    CAS  PubMed  Google Scholar 

  107. Koba H, Okuda K, Watanabe H, Tagami J, Senpuku H. Role of lysine in interaction between surface protein peptides of Streptococcus gordonii and agglutinin peptide. Oral Microbiol Immuno. 2009;24:162–9.

    CAS  Google Scholar 

  108. Beauvillain C, Meloni F, Sirard JC, Blanchard S, Jarry U, Scotet M, et al. The scavenger receptors SRA-1 and SREC-I cooperate with TLR2 in the recognition of the hepatitis C virus non-structural protein 3 by dendritic cells. J Hepatol. 2010;52:644–51.

    CAS  PubMed  Google Scholar 

  109. Ishii J, Adachi H, Aoki J, Koizumi H, Tomita S, Suzuki T, et al. SREC-II, a new member of the scavenger receptor type F family, trans-interacts with SREC-I through its extracellular domain. J Biol Chem. 2002;277:39696–702.

    CAS  PubMed  Google Scholar 

  110. Delneste Y. Scavenger receptors and heat-shock protein-mediated antigen cross-presentation. Biochem Soc Trans. 2004;32:633–5.

    CAS  PubMed  Google Scholar 

  111. Truong TQ, Brodeur MR, Falstrault L, Rhainds D, Brissette L. Expression of caveolin-1 in hepatic cells increases oxidized LDL uptake and preserves the expression of lipoprotein receptors. J Cell Biochem. 2009;108:906–15.

    CAS  PubMed  Google Scholar 

  112. Hsu HY, Hajjar DP, Khan F, Falcone DJ (1998) Ligand binding to macrophage scavenger receptor-A induces urokinase-type plasminogen activator expression by a protein kinase-dependent signaling pathway. 273:1240–1246.

  113. Mori T, Takahashi K, Naito M, Kodama T, Hakamata H, Sakai M, et al. Endocytic pathway of scavenger receptors via trans-Golgi system in bovine alveolar macrophages. Lab Invest. 1994;71:409–16.

    CAS  PubMed  Google Scholar 

  114. Whitman SC, Daugherty A, Post SR. Regulation of acetylated low density lipoprotein uptake in macrophages by pertussis toxin-sensitive G proteins. J Lipid Res. 2000;41:807–13.

    CAS  PubMed  Google Scholar 

  115. Takeshi M, Sakai M, Kobori S, Biwa T, Takemura T, Matsuda H, et al. Two intracellular signaling pathways for activation of protein kinase C are involved in oxidized low-density lipoprotein-induced macrophage growth. Arterioscler Thromb Vasc Biol. 1997;17:3013–20.

    Google Scholar 

  116. Miki S, Tsukada S, Nakamura Y, Aimoto S, Hojo H, Sato B, et al. Functional and possible physical association of scavenger receptor with cytoplasmic tyrosine kinase lyn in monocytic THP-1-derived macrophages. FEBS Lett. 1996;399:241–4.

    CAS  PubMed  Google Scholar 

  117. Scheuermann RH, Racila E, Tucker T, Yefenof E, Street NE, Vitetta ES, et al. Lyn tyrosine kinase signals cell cycle arrest but not apoptosis in B-lineage lymphoma cells. Proc Natl Acad Sci USA. 1994;91:4048–52.

    CAS  PubMed  Google Scholar 

  118. Cao W, Calabro V, Root A, Yan G, Lam K, Olland S, et al. Oligomerization is required for the activity of recombinant soluble LOX-1. FEBS J. 2009;276:4909–20.

    CAS  PubMed  Google Scholar 

  119. Navarro-Tito N, Robledo T, Salazar EP. Arachiodonic acid promotes FAK activation and migration in MDA-MB-213 breast cancer cells. Exp Cell Res. 2008;314:3340–55.

    CAS  PubMed  Google Scholar 

  120. Dole VS, Matuskova J, Vasile E, Yesilaltay A, Bergmeier W, Bernimoulin M, et al. Thrombocytopenia and platelet abnormalities in high-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol. 2008;28:1111–6.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The author thanks Rachel Moseley and Christopher Harkins for the figure illustrations.

Financial

None.

Conflicts of interest

No known conflicts of interest are involved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald J. Mizejewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizejewski, G.J. Review of the putative cell-surface receptors for alpha-fetoprotein: identification of a candidate receptor protein family. Tumor Biol. 32, 241–258 (2011). https://doi.org/10.1007/s13277-010-0134-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-010-0134-5

Keywords

Navigation