Skip to main content
Log in

BKP and projective Hurwitz numbers

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider d-fold branched coverings of the projective plane \(\mathbb {RP}^2\) and show that the hypergeometric tau function of the BKP hierarchy of Kac and van de Leur is the generating function for weighted sums of the related Hurwitz numbers. In particular, we get the \(\mathbb {RP}^2\) analogues of the \(\mathbb {CP}^1\) generating functions proposed by Okounkov and by Goulden and Jackson. Other examples are Hurwitz numbers weighted by the Hall–Littlewood and by the Macdonald polynomials. We also consider integrals of tau functions which generate Hurwitz numbers related to base surfaces with arbitrary Euler characteristics \(\textsc {e}\), in particular projective Hurwitz numbers \(\textsc {e}=1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This BKP hierarchy was called the “charged” and “fermionic” BKP hierarchy in [34]. We call it the “large” BKP hierarchy because it includes the KP hierarchy and may be related [65] to the two-component KP. The “small” KP hierarchy, introduced in [32], is a subhierarchy of the KP hierarchy.

  2. In the present paper we use the so-called power sums \(p_m\) [40] as higher time variables, rather than \(p_m/m\) as is common in soliton theory [32].

  3. Proposition 2 is actually a new version of the known results for completed cycles presented in [1], but we have not yet written down the correspondence in an explicit way.

  4. Recently, paper [13] has investigated the graph counting of the \(\beta =1,2\) ensembles.

References

  1. Alexandrov, A., Mironov, A., Morozov, A., Natanzon, S.: Integrability of Hurwitz partition functions. I. Summary. J. Phys. A Math. Theor. 45, 045209 (2012). arXiv:1103.4100

    Article  ADS  MATH  Google Scholar 

  2. Alexandrov, A., Mironov, A., Morozov, A., Natanzon, S.: On KP-integrable Hurwitz functions. JHEP 11, 080 (2014). arXiv:1405.1395

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Alexandrov, A., Zabrodin, A.V.: Free fermions and tau-functions. J. Geom. Phys. 67, 37–80 (2013). arXiv:1212.6049

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Alexandrov, A.: Matrix models for random partitions. Nucl. Phys. B 851, 620–650 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Alexeevski, A.A., Natanzon, S.M.: Noncommutative two-dimensional field theories and Hurwitz numbers for real algebraic curves. Sel. Math. N.S. 12(3), 307–377 (2006). arXiv:math/0202164

    MathSciNet  MATH  Google Scholar 

  6. Alekseevskii, A.V., Natanzon, S.M.: The algebra of bipartite graphs and Hurwitz numbers of seamed surfaces. Izv. Math. 72(4), 627–646 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Alling, N.L., Greenleaf, N.: Foundation of the theory of Klein surfaces. In: Lecture Notes in Mathematics, vol. 219. Springer, Berlin (1971)

  8. Aganagic, M., Ooguri, H., Saulina, N., Vafa, C.: Black holes, \(q\)-deformed 2D Yang–Mills and nonperturbative topological strings. Nucl. Phys. B 715, 304–348 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Ambjorn, J. and Chekhov, L.: The matrix model for hypergeometric Hurwitz number. Theor. Math. Phys. 181(3), 1486–1498 (2014). arXiv:1409.3553

  10. Ambjorn, J., Chekhov, L.: The matrix model for dessins d’enfants. Ann. Inst. Henri Poincaré D 1(3), 337–361 (2014). arXiv:1404.4240

  11. Bloch, S., Okounkov, A.: The characters of the infinite wedge representation. Adv. Math. 149(1), 1–60 (2000). arXiv:alg-geom/9712009

  12. Brézin, E., Hikami, S.: Intersection numbers from the antisymmetric Gaussian matrix model. Commun. Math. Phys. 7, 50 (2008). arXiv:0804.4531

  13. Carrel, S.R.: The non-orientable map asymptotic constant \(p_g\) (2014). arXiv:1406.1760

  14. de Mello Koch, R., Ramgoolam, S.: From matrix models and quantum fields to Hurwitz space and the absolute Galois group (2010). arXiv:1002.1634

  15. Dijkgraaf, R.: Mirror symmetry and elliptic curves. The moduli space of curves. In: Dijkgraaf, R., Faber, C., van der Geer, G. (eds.) Progress in Mathematics, vol. 129. Birkhauser, Basel (1995)

    Google Scholar 

  16. Dunin-Barkowski, P., Kazarian, M., Orantin, N., Shadrin, S., Spitz, L.: Polynomiality of Hurwitz numbers, Bouchard–Marino conjecture, and a new proof of the ELSV formula (2015). arXiv:1307.4729

  17. Ekedahl, T., Lando, S.K., Shapiro, V., Vainshtein, A.: On Hurwitz numbers and Hodge integrals. C.R. Acad. Sci. Paris Ser. I. Math 146(2), 1175–1180 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Frobenius, G.: Uber Gruppencharaktere. Sitzber, Kolniglich Preuss. Akad. Wiss, Berlin (1896)

    MATH  Google Scholar 

  19. Frobenius, G., Schur, I.: Uber die reellen Darstellungen der endichen Druppen. Sitzber, Kolniglich Preuss. Akad. Wiss, Berlin (1906)

    MATH  Google Scholar 

  20. Goulden, I.P., Jackson, D.M.: The KP hierarchy, branched covers, and triangulations. Adv. Math. 219, 932–951 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Goulden, I.P., Jackson, D.M.: Transitive factorizations into transpositions and holomorphic mappings on the sphere. Proc. Am. Math. Soc. 125(1), 51–60 (1997)

    Article  MATH  Google Scholar 

  22. Goulden, I.P., Guay-Paquet, M., Novak, J.: Monotone Hurwitz numbers and HCIZ integral. Ann. Math. Blaise Pascal 21, 71–99 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Goulden, I.P., Guay-Paquet, M., Novak, J.: Monotone Hurwitz numbers in genus zero. Can. J. Math. 65(5), 1020–1042 (2013). arXiv:1204.2618

    Article  MathSciNet  MATH  Google Scholar 

  24. Guay-Paquet, M., Harnad, J.: 2D Toda \(\tau \)-functions as combinatorial generating functions. Lett. Math. Phys. 105, 827–852 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Guay-Paquet, M., Harnad, J.: Generating functions for weighted Hurwitz numbers. J. Math. Phys. (To appear) (2014). arXiv:1408.6766

  26. Harnad, J., Orlov, A.Y.: Scalar product of symmetric functions and matrix integrals. Theor. Math. Phys. 137(3), 1676–1690 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Harnad, J., Orlov, A. Y.: Matrix integrals as Borel sums of Schur function expansions. In: Abenda S., Gaeta G. (eds.) Proceedings of the Symmetry and Perturbation Theory 2002, Cala Gonoone (Sardinia), May 1–26, pp. 116–123. World Scientific, Singapore (2002). arXiv:nlin/0209035

  28. Harnad, J., Orlov, A.Y.: Fermionic construction of partition functions for two-matrix models and perturbative Schur function expansions. J. Phys. A 39, 8783–8809 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Harnad, J., Orlov, A.Y.: Hypergeometric \(\tau \)-functions, Hurwitz numbers and enumeration of paths. Commun. Math. Phys. 338, 267–284 (2015). arXiv:1407.7800

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Harnad, J.: Multispecies quantum Hurwitz numbers. SIGMA 11, 097 (2015). arXiv:1410.8817

    ADS  MATH  Google Scholar 

  31. Harnad, J.: Weighted Hurwitz numbers and hypergeometric \(\tau \)-functions: an overview. In: AMS Proceedings of Symposia in Pure Mathematics, vol. 93, pp. 289–333 (2016). arXiv:1504.03408

  32. Jimbo, M., Miwa, T.: Solitons and infinite dimensional Lie algebras. Publ. RIMS Kyoto Univ. 19, 943–1001 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jones, G.A.: Enumeration of homomorphisms and surface coverings. Q. J. Math. 2(46), 485–507 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kac, V., van de Leur, J.: The geometry of spinors and the multicomponent BKP and DKP hierarchies. In: CRM Proceedings and Lecture Notes, vol. 14, pp. 159–202 (1998)

  35. Kazarian, M., Lando, S.: Combinatorial solutions to integrable hierarchies. Uspekhi Mat. Nauk 70, 3(423), 77–106 (2015). English translation: Russ. Math. Surv. 70, 453–482 (2015). arXiv:1512.07172

  36. Kazarian, M.E., Lando, S.K.: An algebro-geometric proof of Witten’s conjecture. J. Am. Math. Soc. 20(4), 1079–1089 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kazarian, M., Zograph, P.: Virasoro constraints and topological recursion for Grothendieck’s dessin counting Lett. Math. Phys. 105(8), 1057–1084 (2015). arXiv:1406.5976

  38. Kharchev, S., Marshakov, A., Mironov, A., Morozov, A.: Generalized Kazakov–Migdal–Kontsevich model: group theory aspects. Int. J. Mod. Phys. A10, 2015 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Lando, S. K., Zvonkin, A. K.: Graphs on surfaces and their applications. In: Encyclopaedia of Mathematical Sciences, Volume 141, with Appendix by D. Zagier. Springer, New York (2004)

  40. Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  41. Mednykh, A.D.: Determination of the number of nonequivalent covering over a compact Riemann surface. Sov. Math. Dokl. 19, 318–320 (1978)

    MATH  Google Scholar 

  42. Mednykh, A.D., Pozdnyakova, G.G.: The number of nonequivalent coverings over a compact nonorientable surface. Sibirs. Mat. Zh. 27, 123–131, 199 (1986)

  43. Milne, S.C.: Summation theorems for basic hypergeometric series of Schur function argument. In: Gonchar, A.A., Saff, E.B. (eds.) Progress in Approximation Theory, pp. 51–77. Springer, New York (1992)

    Chapter  Google Scholar 

  44. Mironov, A.D., Morozov, A.Y., Natanzon, S.M.: Complete set of cut-and-join operators in the Hurwitz-Kontsevich theory. Theor. Math. Phys. 166(1), 1–22 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. Mironov, A.D., Morozov, A.Y., Natanzon, S.M.: Algebra of differential operators associated with Young diagrams. J. Geom. Phys. 62, 148–155 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Mulase, M., Waldron, A.: Duality of orthogonal and symplectic matrix integrals and quaternionic Feynman graphs Com. Math. Phys. 240, 553–586 (2003). arXiv:math-ph/0206011

  47. Natanzon, S.M.: Klein surfaces. Russ. Math. Surv. 45(6), 53–108 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  48. Natanzon, S.M.: Moduli of Riemann surfaces, real algebraic curves and their superanalogs. Transl. Math. Monogr. AMS 225, 160 (2004)

    MathSciNet  MATH  Google Scholar 

  49. Natanzon, S.M.: Simple Hurwitz numbers of a disk. Funct. Anal. Appl. 44(1), 44–58 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Natanzon, S.M., Orlov, A.Y.: Hurwitz numbers and BKP hierarchy (2014). arXiv:1407.8323

  51. Okounkov, A.: Toda equations for Hurwitz numbers. Math. Res. Lett. 7, 447–453 (2000). arXiv:math/0004128

    Article  MathSciNet  MATH  Google Scholar 

  52. Okounkov, A., Pandharipande, R.: Gromov–Witten theory, Hurwitz theory and completed cycles. Ann. Math. 163, 517 (2006). arXiv:math.AG/0204305

    Article  MathSciNet  MATH  Google Scholar 

  53. Orlov, A.Y.: Soliton theory, symmetric functions and matrix integrals. Acta Appl. Math. 86(1–2), 131–158 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  54. Orlov, A.Y.: Deformed Ginibre ensembles and integrable systems. Phys. Lett. A 378, 319–328 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  55. Orlov, A.Y., Scherbin, D.: Fermionic representation for basic hypergeometric functions related to Schur polynomials (2000). arXiv preprint arXiv:nlin/0001001

  56. Orlov, A.Y., Scherbin, D.: Milne’s hypergeometric functions in terms of free fermions. J. Phys. A Math. Gen. 34(11), 2295 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Orlov, A.Y., Scherbin, D.: Hypergeometric solutions of soliton equations. Theor. Math. Phys. 128(1), 906–926 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  58. Orlov, A.Y., Shiota, T., Takasaki, K.: Pfaffian structures and certain solutions to BKP hierarchies I. Sums over partitions (2012). arXiv:1201.4518

  59. Orlov, A.Y., Shiota, T., Takasaki, K.: Pfaffian structures and certain solutions to BKP hierarchies II. Multiple integrals (2016). arXiv:1611.02244

  60. Orlov, A.Y., Shiota, T.: Schur function expansion for normal matrix model and associated discrete matrix models. Phys. Lett. A 343(5), 384–396 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Orlov, A.Y.: New solvable matrix integrals. Int. J. Mod. Phys. A 19(Suppl. 02), 276–293 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Orlov, A.Y.: Matrix integrals and Hurwitz numbers (2017). preprint arXiv:1701.02296

  63. Szabo, R., Tierz, M.: Chern–Simons matrix models, two-dimensional Yang–Mills theory, and the Sutherland model. J. Phys. A 43, 265401 (2010). arXiv:1003.1228

  64. van de Leur, J.W.: Matrix integrals and geometry of spinors. J. Nonlinear Math. Phys. 8, 288–311 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. van de Leur, J.W., Orlov, A.Y.: Pfaffian and determinantal tau functions I. Lett. Math Phys. 105(11), 1499–1531 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Zakharov, V.E., Shabat, A.B.: Integration of nonlinear equations of mathemetical physics by the method of inverse scattering. I J. Funct. Anal. Appl. 8, 226 (1974)

  67. Zakharov, V.E., Shabat, A.B.: Integration of nonlinear equations of mathemetical physics by the method of inverse scattering. II J. Funct. Anal. Appl. 13, 166 (1979)

  68. Zhou, J.: Hodge integrals, Hurwitz numbers and symmetric groups (2003). arXiv preprint arXiv:math/0308024

  69. Zograf, P.: Enumeration of Grothendieck’s dessins and KP hierarchy Int. Math. Res. Not. 24, 13533–15344 (2015). arXiv:1312.2538 (2013)

Download references

Acknowledgements

A.O. was partially supported by RFBR grant 14-01-00860, by V.E. Zakharov’s scientific school (Program for Support of Leading Scientific Schools, Grant NS-3753.2014.2), and also by the Russian Academic Excellence Project “5-100.” The work of S.N. was partially supported by RFBR Grant 16-01-00409. We would first like to thank J. Harnad, A. Mironov, and J. van de Leur for important remarks and also A. Zabrodin, S. Loktev, and I. Marshall for useful discussions. Special thanks also to L. Chekhov for organizing the workshop on Hurwitz numbers (Moscow, May 2014) which inspired us to do this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr Yu. Orlov.

Appendices

Appendix A: Hirota Equations for the BKP Tau Function with Two Discrete Time Variables

The BKP hierarchy we are interested in was introduced in [34]. In this paper, the BKP tau function \(\tau ^\mathrm{B}(N,\mathbf {p})\) does not contain the discrete variable n. We need a slightly more general version of the BKP hierarchy which includes n as the higher time parameter [58, 59, 65]. The Hirota equations for the tau functions \(\tau ^\mathrm{B}(N,n,\mathbf {p})\) of this modified BKP hierarchy read

$$\begin{aligned}&\oint \frac{dz}{2\pi i}z^{N'-N-1}e^{V(\mathbf {p}'-\mathbf {p},z)} \tau \left( N'-1,n,\mathbf {p}'-[z^{-1}]\right) \tau \left( N+1,n+1,\mathbf {p}+[z^{-1}]\right) \nonumber \\&\qquad + \oint \frac{dz}{2\pi i}z^{N-N'-3}e^{V(\mathbf {p}-\mathbf {p}',z)} \tau \left( N'+1,n+2,\mathbf {p}'+[z^{-1}]\right) \nonumber \\&\qquad \times \tau \left( N-1,n-1,\mathbf {p}-[z^{-1}]\right) \nonumber \\&\quad = \tau (N'+1,n+1,\mathbf {p}') \tau (N-1,n,\mathbf {p}) - \frac{1}{2}\left( 1-(-1)^{N'+N}\right) \nonumber \\&\qquad \times \tau \left( N',n+1,\mathbf {p}'|g\right) \tau (N,n,\mathbf {p}) \end{aligned}$$
(115)

and

$$\begin{aligned}&\oint \frac{dz}{2\pi i}z^{N'-N-2}e^{V(\mathbf {p}'-\mathbf {p},z)} \tau \left( N'-1,n-1,\mathbf {p}'-[z^{-1}]\right) \nonumber \\&\qquad \times \, \tau \left( N+1,n+1,\mathbf {p}+[z^{-1}]\right) \nonumber \\&\qquad + \oint \frac{dz}{2\pi i}z^{N-N'-2}e^{V(\mathbf {p}-\mathbf {p}',z)} \tau \left( N'+1,n+1,\mathbf {p}'+[z^{-1}]\right) \nonumber \\&\qquad \times \, \tau \left( N-1,n-1,\mathbf {p}'-[z^{-1}]\right) \nonumber \\&\quad = \frac{1}{2}\left( 1-(-1)^{N'+N}\right) \tau \left( N',n,\mathbf {p}'\right) \tau \left( N,n,\mathbf {p}\right) . \end{aligned}$$
(116)

Here \(\mathbf {p}=(p_1,p_2,\dots )\), \(\mathbf {p}'=(p'_1,p'_2,\dots )\). The notation \(\mathbf {p}+[z^{-1}]\) denotes the set

$$\begin{aligned} \left( p_1+z^{-1},p_2+z^{-2}, p_3+z^{-3},\dots \right) \end{aligned}$$

and V is defined by (11). Equations (116) are the same as in [34], while (115) relate tau functions with different discrete time n and were given in [58, 59, 65]. Taking \(N'=N+1\) and all \(p_i=p_i',\,i\ne 2\) in (116), then picking up the terms linear in \(p'_2-p_2\), we obtain (65). Taking \(N'=N+1\) and all \(p_i=p_i',\,i\ne 1\) in (115), then picking up the terms linear in \(p'_1-p_1\), we obtain (66). The relation between the BKP hierarchy and the two- and three-component KP hierarchy was established in [65].

Appendix B: Hypergeometric BKP tau function—Fermionic formulae

Details may be found in [55, 58, 59]. Let \(\{\psi _i\), \(\psi _i^\dag \), \(i \in \mathbb {Z}\}\) be Fermi creation and annihilation operators that satisfy the usual anticommutation relations and vacuum annihilation conditions

$$\begin{aligned}{}[\psi _i, \, \psi _j]_+ = \delta _{i,j}, \quad \psi _i | n\rangle = \psi _{-i-1} | n\rangle =0,\quad i< n. \end{aligned}$$

In contrast to the DKP hierarchy introduced in [32], for the BKP hierarchy introduced in [34], we need an additional Fermi mode \(\phi \) which anticommutes with all the other Fermi operators except itself, for which \(\phi ^2=1/2\), and \(\phi |0\rangle =|0\rangle /\sqrt{2}\) [34]. Then the hypergeometric BKP tau function introduced in [58, 59] may be written as

$$\begin{aligned}&g(n)\tau ^\mathrm{B}_r(N,n,\mathbf {p}) \nonumber \\&\quad = \Big \langle n\big | e^{\sum _{m>0} \frac{1}{m} J_m p_m} e^{\sum _{i < 0} U_i \psi _i^\dag \psi _i -\sum _{i \ge 0} U_i \psi _i\psi _i^\dag } e^{\sum _{i>j} \psi _i\psi _j\,-\sqrt{2}\,\phi \sum _{i\in \mathbb {Z}} \psi _i}\big |n-N\Big \rangle \nonumber \\&\quad = \sum _{\begin{array}{c} \lambda \\ \ell (\lambda )\le N \end{array}} \,e^{-U_\lambda (n)} s_\lambda (\mathbf {p}) = g(n) \sum _{\begin{array}{c} \lambda \\ \ell (\lambda )\le N \end{array}} r_\lambda (n)s_\lambda (\mathbf {p}), \end{aligned}$$
(117)

where \(J_m=\sum _{i\in \mathbb {Z}}\,\psi _i\psi ^\dag _{i+m}\), \(m>0\), \(U_\lambda (n)=\sum _{i} U_{h_i+n}\), \(r(i)=e^{U_{i-1}-U_{i}}\), and

$$\begin{aligned} g(n):=\Big \langle n\big | e^{\sum _{i< 0} U_i \psi _i^\dag \psi _i -\sum _{i \ge 0} U_i \psi _i\psi _i^\dag } \big |n\Big \rangle =\left\{ \begin{array}{ll} e^{-U_0+\cdots -U_{n-1}}&{} \mathrm{if}\,\, n>0,\\ 1&{} \mathrm{if} \,\,n=0,\\ e^{U_{-1}+\cdots U_{n}}&{} \mathrm{if}\,\, n<0. \end{array}\right. \end{aligned}$$
(118)

In (117) the summation runs over all partitions whose lengths do not exceed N.

Remark 23

Note that, without the additional Fermi mode \(\phi \), the summation range in (117) does include partitions with odd partition lengths. One can avoid this restriction by introducing a pair of DKP tau functions, which seems unnatural.

Apart from (117), the same series without the restriction \(\ell (\lambda )\le N\) gives the BKP tau function. However, it is related to the single value \(n=0\). The n-dependence destroys the simple form of this tau function [58, 59].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natanzon, S.M., Orlov, A.Y. BKP and projective Hurwitz numbers. Lett Math Phys 107, 1065–1109 (2017). https://doi.org/10.1007/s11005-017-0944-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-017-0944-0

Keywords

Mathematics Subject Classification

Navigation