Skip to main content
Log in

Hypergeometric \({\tau}\) -Functions, Hurwitz Numbers and Enumeration of Paths

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A multiparametric family of 2D Toda \({\tau}\) -functions of hypergeometric type is shown to provide generating functions for composite, signed Hurwitz numbers that enumerate certain classes of branched coverings of the Riemann sphere and paths in the Cayley graph of S n . The coefficients \({{F^{c_{1}, . . . , c_{l}}_{d_{1}, . . . , d_{m}}}(\mu, \nu)}\) in their series expansion over products \({P_{\mu}P^{'}_{\nu}}\) of power sum symmetric functions in the two sets of Toda flow parameters and powers of the l + m auxiliary parameters are shown to enumerate \({|\mu|=|\nu|=n}\) fold branched covers of the Riemann sphere with specified ramification profiles \({ \mu}\) and \({\nu}\) at a pair of points, and two sets of additional branch points, satisfying certain additional conditions on their ramification profile lengths. The first group consists of l branch points, with ramification profile lengths fixed to be the numbers \({(n-c_{1}, . . . , n-c_{l})}\) ; the second consists of m further groups of “coloured” branch points, of variable number, for which the sums of the complements of the ramification profile lengths within the groups are fixed to equal the numbers \({(d_{1}, . . . , d_{m})}\). The latter are counted with signs determined by the parity of the total number of such branch points. The coefficients \({{F^{c_{1}, . . . , c_{l}}_{d_{1}, . . . , d_{m}}}(\mu, \nu)}\) are also shown to enumerate paths in the Cayley graph of the symmetric group S n generated by transpositions, starting, as in the usual double Hurwitz case, at an element in the conjugacy class of cycle type \({\mu}\) and ending in the class of type \({\nu}\), with the first l consecutive subsequences of \({(c_{1}, . . . , c_{l})}\) transpositions strictly monotonically increasing, and the subsequent subsequences of \({(d_{1}, . . . , d_{m})}\) transpositions weakly increasing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrov A., Mironov A., Morozov A., Natanzon S.: Integrability of Hurwitz partition functions. I. Summary. J. Phys. A 45, 045209 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  2. Alexandrov A., Mironov A., Morozov A., Natanzon S.: On KP-integrable Hurwitz functions. JHEP 1411, 080 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  3. Ambjørn, J., Chekhov, L.: The matrix model for dessins d’enfants. Ann. Inst. Henri Poincaré, Comb. Phys. Interact. 1, 337–361 (2014). See also arXiv:1404.4240

  4. Brown T.W.: Complex matrix model duality. Phys. Rev. D 83, 085002 (2011)

    Article  ADS  Google Scholar 

  5. Diaconis, P., Greene, C.: Applications of Murphy’s elements. Stanford Technical Report 335 (1989)

  6. Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation groups for soliton equations. In: Sato, M. (ed.) Non-Linear Integrable Systems Classical and Quantum Theory, Proceedings of RIMS Symposium (1981). World Scientific, (1983)

  7. Eynard B., Orantin N.: Topological recursion in enumerative geometry and random matrices. J. Phys. A 42, 293001 (2009)

    Article  MathSciNet  Google Scholar 

  8. Fulton, W., Harris, J.: Representation Theory, Graduate Texts in Mathematics, vol. 129, Chapt. 4, and Appendix A. Springer, New York, Berlin, Heidelberg (1991)

  9. Frobenius, G.: Über die Charaktere der symmetrischen Gruppe. Sitzber. Pruess. Akad. Berlin, pp. 516–534 (1900)

  10. Gross K.I., Richards D.S.: Special functions of matrix arguments. I: Algebraic induction, zonal polynomials, and hypergeometric functions. Trans. Am. Math. Soc. 301, 781–811 (1987)

    MATH  MathSciNet  Google Scholar 

  11. Goulden I.P., Guay-Paquet M., Novak J.: Monotone Hurwitz numbers and the HCIZ integral. Ann. Math. Blaise Pascal 21(1), 71–89 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  12. Goulden, I.P., Guay-Paquet, M., Novak J.: Toda equations and piecewise polynomiality for mixed double Hurwitz numbers. arXiv:1307.2137

  13. Goulden I.P., Jackson D.M.: Transitive factorizations into transpositions and holomorphic mappings on the sphere. Proc. Am. Math. Soc. 125(1), 51–60 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Guay-Paquet, M., Harnad, J.: 2D Toda \({\tau}\) -functions as combinatorial generating functions. Lett. Math. Phys. (2015, in press). arXiv:1405.6303

  15. Harish-Chandra: Differential operators on a semisimple Lie algebra. Am. J. Math. 79, 87–120 (1957)

  16. Itzykson, C., Zuber, J.-B.: The planar approximation. II. J. Math. Phys. 21, 411–21 (1980)

  17. Harnad, J., Orlov, A.Yu.: Fermionic construction of partition functions for two-matrix models and perturbative Schur function expansions. J. Phys. A 39, 8783–8809 (2006). See also arXiv:math-ph/0512056

  18. Harnad, J., Orlov, A.Yu.: Convolution symmetries of integrable hierarchies, matrix models and tau functions. In: Deift, P., Forrester, P. (eds.) Random Matrix Theory, Interacting Particle Systems, and Integrable Systems. MSRI Publications, vol. 65, pp. 247–275. Cambridge University Press (2014). See also arXiv:0901.0323

  19. Kazarian, M., Zograf, P.: ‘Virasoro constraints and topological recursion for Grothendieck’s dessin counting. arXiv:1406.5976

  20. Kharchev S., Marshakov A., Mironov A., Morozov A.: Generalized Kazakov–Migdal–Kontsevich model: group theory aspects. Int. J. Mod. Phys. A 10, 2015 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Jucys A.A.: Symmetric polynomials and the center of the symmetric group ring. Rep. Math. Phys. 5(1), 107–112 (1974)

  22. Lando S.: Combinatorial facets of Hurwitz numbers. In: Koolen, J., Kwak, J.H., Xu, M.Y. (eds.) Applications of Group Theory to Combinatorics, pp. 109–132. Taylor and Francis Group, London (2008)

  23. Lando, S.K., Zvonkin, A.K.: Graphs on Surfaces and Their Applications, Encyclopaedia of Mathematical Sciences, with appendix by D. Zagier, vol. 141. Springer, New York (2004)

  24. Macdonald I.G.: Symmetric Functions and Hall Polynomials. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  25. de Mello Koch, R., Ramgoolam, S.: From matrix models and quantum fields to Hurwitz space and the absolute Galois group. arXiv:1002.1634

  26. Murphy G.E.: A new construction of Young’s seminormal representation of the symmetric groups. J. Algebra 69, 287–297 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  27. Mironov A.D., Morozov A.Yu., Natanzon S.M.: Complete set of cut-and-join operators in the Hurwitz–Kontsevich theory. Theor. Math. Phys. 166, 1–22 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Okounkov, A.: Toda equations for Hurwitz numbers. Math. Res. Lett. 7, 447–453 (2000). See also arXiv:math/0004128

  29. Okounkov, A., Pandharipande, R.: Gromov-Witten theory, Hurwitz theory, and completed cycles. Ann. Math. 163 517–560 (2006); The equivariant Gromov–Witten theory of P 1. ibid. 163 561–605 (2006)

  30. Orlov, A.Yu.: New solvable matrix integrals. Int. J. Mod. Phys. A 19(suppl 02), 276–93 (2004)

  31. Orlov, A.Yu., Shiota, T.: Schur function expansion for normal matrix model and associated discrete matrix models. Phys. Lett. A 343, 384–96 (2005)

  32. Orlov A.Yu., Scherbin D.M.: Hypergeometric solutions of soliton equations. Theor. Math. Phys. 128, 906–926 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  33. Pandharipande R.: The Toda equations and the Gromov–Witten theory of the Riemann sphere. Lett. Math. Phys. 53, 59–74 (2000)

    Article  MathSciNet  Google Scholar 

  34. Takasaki, K.: Initial value problem for the Toda lattice hierarchy. In: Group Representation and Systems of Differential Equations. Advanced Studies in Pure Mathematics, vol. 4, pp. 139–163 (1984)

  35. Takebe T.: Representation theoretical meaning of the initial value problem for the Toda lattice hierarchy I. Lett. Math. Phys. 21, 77–84 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Ueno, K., Takasaki, K.: Toda lattice hierarchy. In: Group Representation and Systems of Differential Equations. Advanced Studies in Pure Mathematics, vol. 4, pp. 1–95 (1984)

  37. Zograf, P.: Enumeration of Grothendieck’s dessins and KP hierarchy. arXiv:1312.2538 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Harnad.

Additional information

Communicated by N. Reshetikhin

Work of JH supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Fonds de recherche du Québec—Nature et technologies (FRQNT); work of AO supported by RFBR Grant 14-01-00860.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harnad, J., Orlov, A.Y. Hypergeometric \({\tau}\) -Functions, Hurwitz Numbers and Enumeration of Paths. Commun. Math. Phys. 338, 267–284 (2015). https://doi.org/10.1007/s00220-015-2329-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2329-5

Keywords

Navigation