Skip to main content
Log in

AVO analysis of BSR to assess free gas within fine-grained sediments in the Shenhu area, South China Sea

  • Original Research Paper
  • Published:
Marine Geophysical Research Aims and scope Submit manuscript

Abstract

Gas hydrates have been identified from two-dimensional (2D) seismic data and logging data above bottom simulating reflector (BSR) during China’s first gas hydrate drilling expedition in 2007. The multichannel reflection seismic data were processed to be preserved amplitudes for quantitatively analyzing amplitude variation with offset (AVO) at BSRs. Low P-wave velocity anomaly below BSR, coinciding with high amplitude reflections in 2D seismic data, indicates the presence of free gas. The absolute values of reflection coefficient versus incidence angles for BSR range from 0 to 0.12 at different CMPs near Site SH2. According to logging data and gas hydrate saturations estimated from resistivity of Site SH2, P-wave velocities calculated from effective media theory (EMT) fit the measured sonic velocities well and we choose EMT to calculate elastic velocities for AVO. The rock-physics modeling and AVO analysis were combined to quantitatively assess free gas saturations and distribution by the reflection coefficients variation of the BSRs in Shenhu area, South China Sea. AVO estimation indicates that free gas saturations immediately beneath BSRs may be about 0.2 % (uniform distribution) and up to about 10 % (patchy distribution) at Site SH2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aki K, Richards PG (2002) Quantitative seismology, 2nd edn. University Science Books, Sausalito

    Google Scholar 

  • Andreassen K, Hart PE, MacKay M (1997) Amplitude versus offset modeling of the bottom simulating reflection associated with submarine gas hydrates. Mar Geol 137:25–40. doi:10.1016/S0025-3227(96)00076-X

    Article  Google Scholar 

  • Bünz S, Mienert J (2004) Acoustic imaging of gas hydrate and free gas at the Storegga Slide. J Geophys Res B109(B04102):1–15. doi:10.1029/2003JB002863

    Google Scholar 

  • Carcione JM, Tinivella U (2000) Bottom-simulating reflectors: seismic velocities and AVO effects. Geophysics 65:54–67. doi:10.1190/1.1444725

    Article  Google Scholar 

  • Castagna JP, Swan HW (1997) Principles of AVO crossplotting. Lead Edge 16:337–344. doi:10.1190/1.1437626

    Article  Google Scholar 

  • Chen MA, Riedel M, Hyndman R, Dosso SE (2007) AVO inversion of BSRs in marine gas hydrate studies. Geophysics 72:C31–C43. doi:10.1190/1/2435604

    Article  Google Scholar 

  • Dai J, Snyder F, Gillespie D, Koesoemadinata A, Dutta N (2008) Exploration for gas hydrates in the deepwater, northern Gulf of Mexico: part I. A seismic approach based on geologic model, inversion, and rock physics principles. Mar Petrol Geol 25:830–844. doi:10.1016/j.marpetgeo.2008.02.006

    Article  Google Scholar 

  • Dewangan P, Ramprasad T (2007) Velocity and AVO analysis for the investigation of gas hydrate along a profile in the western continental margin of India. Mar Geophys Res 28:201–211. doi:10.1007/s11001-007-9027-4

    Article  Google Scholar 

  • Dong DD, Wu SG, Zhang GC, Yuan SQ (2008) Rifting process and formation mechanisms of syn-rift stage prolongation in the deepwater basin, northern South China Sea. Chin Sci Bull 53:3715–3725. doi:10.1007/s11434-008-0326-1

    Article  Google Scholar 

  • Dong DD, Zhang GC, Zhong K, Yuan SQ, Wu SG (2009) Tectonic evolution and dynamics of deepwater area of Pearl River Mouth basin, northern South China Sea. J Earth Sci 20:147–159. doi:10.1007/s12583-009-0016-1

    Article  Google Scholar 

  • Dvorkin J, Moos D, Packwood JL, Nur AM (1999) Identifying patchy saturation from well logs. Geophysics 64:176–1759. doi:10.1190/1.1444681

    Google Scholar 

  • Ecker C, Dvorkin J, Nur AM (1998) Sediments with gas hydrates: internal structure from seismic AVO. Geophysics 63:1659–1669. doi:10.1190/1.1444462

    Article  Google Scholar 

  • Ecker C, Dvorkin J, Nur AM (2000) Estimating the amount of gas hydrate and free gas from marine seismic data. Geophysics 65:565–573. doi:10.1190/1.1444752

    Article  Google Scholar 

  • Fohrmann M, Pecher IA (2012) Analysing sand-dominated channel systems for potential gas-hydrate-reservoirs using an AVO seismic inversion technique on the Southern Hikurangi Margin, New Zealand. Mar Petrol Geol 38:19–34. doi:10.1016/j.marpetgeo.2012.08.001

    Article  Google Scholar 

  • Helgerud MB, Dvorkin J, Nur A, Sakai A, Collett T (1999) Elastic-wave velocity in marine sediments with gas hydrates: effective medium modeling. Geophys Res Lett 26:2021–2024. doi:10.1029/1999GL900421

    Article  Google Scholar 

  • Holbrook WS, Hoskins H, Wood WT, Stephen RA, Lizarralde D (1996) Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling. Science 273:1840–1843. doi:10.1126/science.273 5283.1840

    Article  Google Scholar 

  • Huang BJ, Xiao XM, Zhang MQ (2003) Geochemistry, grouping and origins of crude oils in the western Pearl River Mouth Basin, offshore South China Sea. Org Geochem 34:993–1008. doi:10.1016/S0146-6380(03)00035-4

    Article  Google Scholar 

  • Hyndman RD, Spence GD (1992) A seismic study of methane hydrate marine bottom simulating reflectors. J Geophys Res 97:6683–6698. doi:10.1029/92JB00234

    Article  Google Scholar 

  • Kvenvolden KA (1993) Gas hydrates-geological perspective and global change. Rev Geophys 31:173–187. doi:10.1029/93RG00268

    Article  Google Scholar 

  • Lee MW, Hutchinson DR, Collett TS, Dillon WP (1996) Seismic velocities for hydrate-bearing sediments using weighted equation. J Geophys Res 101:20347–20358. doi:10.1029/96JB01886

    Article  Google Scholar 

  • Li L, Lei XH, Zhang X, Zhang GX (2012) Heat flow derived from BSR and its implications for gas hydrate stability zone in Shenhu Area of northern South China Sea. Mar Geophys Res 33:77–87. doi:10.1007/s11001-012-9147-3

    Article  Google Scholar 

  • Li P, Rao CT (1994) Tectonic characteristics and evolution history of the Pearl River Mouth Basin. Tectonophysics 235:13–25. doi:10.1016/0040-1951(94)90014-0

    Google Scholar 

  • Lu SM, McMechan GA (2002) Estimation of gas hydrate and free gas saturation, concentration, and distribution from seismic data. Geophysics 67:582–593. doi:10.1190/1.1468619

    Article  Google Scholar 

  • Lu SM, McMechan GA (2004) Elastic impedance inversion of multichannel seismic data from unconsolidated sediments containing gas hydrate and free gas. Geophysics 69:164–179. doi:10.1190/1.1649385

    Article  Google Scholar 

  • Lu HF, Chen H, Chen F, Liao ZL (2009) Mineralogy of the sediments from gas-hydrate drilling sites, Shenhu area, South China Sea. Geol Res South China Sea 20:28–39 (in Chinese with English abstract)

    Google Scholar 

  • Lüdmann T, Wong HK (1999) Neotectonic regime on the passive continental margin of the northern South China Sea. Tectonophysics 311:113–138. doi:10.1016/S0040-1951(99)00155-9

  • Mavko G, Mukerji T (1998) Bounds on low-frequency seismic velocities in partially saturated rocks. Geophysics 63:918–924. doi:10.1190/1.1444402

    Article  Google Scholar 

  • Müller C, Bönnemann C, Neben S (2007) AVO study of a gas-hydrate deposit, offshore Costa Rica. Geophys Prospect 55:719–735. doi:10.1111/j.1365-2478.2007.00632.x

    Article  Google Scholar 

  • Navalpakam RS, Pecher IA, Stern T (2012) Weak and segmented bottom simulating reflections on the Hikurangi Margin, New Zealand-Implications for gas hydrate reservoir rocks. J Petrol Sci Eng 88:29–40. doi:10.1016/j.petrol.2012.01.008

    Article  Google Scholar 

  • Normark WR, Reid JA, Sliter RW, Holton D, Gutmacher CE, Fisher MA, Childs JR (1999) Cruise report for O1-99-SC Southern California earthquake hazards project. U.S. Geological Survey Open-File Report No. 99–560

  • Ojha M, Sain K (2007) Seismic velocities and quantification of gas-hydrates from AVA modeling in the western continental margin of India. Mar Geophys Res 28:101–107. doi:10.1007/s11001-007-9017-6

    Article  Google Scholar 

  • Ojha M, Sain K (2008) Appraisal of gas hydrates/free-gas from Vp/Vs ratio in the Makran accretionary prism. Mar Petrol Geol 25:637–644. doi:10.1016/j.marpetgeo.2007.10.007

    Article  Google Scholar 

  • Ojha M, Sain K, Minshull TA (2010) Assessment of gas hydrates saturation in the Makran accretionary prism using the offset dependence of seismic amplitudes. Geophysics 75:C1–C6. doi:10.1190/1.3315861

    Article  Google Scholar 

  • Pearson CF, Halleck PM, McGulre PL, Hermes R, Mathews M (1983) Natural gas hydrate deposits: a review of in situ properties. J Phys Chem 87:4180–4185. doi:10.1021/j100244a041

    Article  Google Scholar 

  • Pecher IA, Henrys SA, Zhu H (2004) Seismic images of gas conduits beneath vents and gas hydrates on Ritchie Ridge, Hikurangi margin, New Zealand. New Zeal J Geol Geop 47:275–279. doi:10.1080/00288306.2004.9515054

    Article  Google Scholar 

  • Schnurle P, Liu CS, Hsiuan TH, Wang TK (2004) Characteristics of gas hydrate and free gas offshore southwestern Taiwan from a combined MCS/OBS data analysis. Mar Geophys Res 25:157–180. doi:10.1007/s11001-005-0740-6

    Article  Google Scholar 

  • Shelander D, Dai JC, Bunge G (2010) Predicting saturation of gas hydrates using pre-stack seismic data, Gulf of Mexico. Mar Geophys Res 31:39–57. doi:10.1007/s11001-010-9087-8

    Article  Google Scholar 

  • Sheriff RE, Geldart LP (1995) Exploration seismology, Second edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Singh SC, Minshull TA, Spence GD (1993) Velocity structure of a gas hydrate reflector. Science 260:204–207. doi:10.1126/science.260.5105.204

    Article  Google Scholar 

  • Sun QL, Wu SG, Cartwright J, Dong DD (2012a) Shallow gas and focused fluid flow systems in the Pearl River Mouth Basin, northern South China Sea. Mar Geol 315–318:1–14. doi:10.1016/j.margeo.2012.05.003

    Article  Google Scholar 

  • Sun YB, Wu SG, Dong DD, Lüdmann T, Gong YH (2012b) Gas hydrates associated with gas chimneys in fine-grained sediments of the northern South China Sea. Mar Geol 311–314:32–40. doi:10.1016/j.margeo.2012.04.003

    Article  Google Scholar 

  • Tinivella U (2002) The seismic response to overpressure versus gas hydrate and free gas concentration. J Seism Explor 11:283–305

    Google Scholar 

  • Wang XJ, Wu SG, Liu XW (2006) Factors affecting the estimation of gas hydrate and free gas saturation. Chin J Geophys 49:504–511. doi:10.1002/cjg2.853 (in Chinese with English abstract)

    Google Scholar 

  • Wang XJ, Hutchinson DR, Wu SG, Yang SX, Guo YQ (2011a) Elevated gas hydrate saturation within silt and silty clay sediments in the Shenhu area, South China Sea. J Geophys Res 116:B05102. doi:10.1029/2010JB007944

    Google Scholar 

  • Wang XJ, Wu SG, Lee M, Guo YQ, Yang SX, Liang JQ (2011b) Gas hydrate saturation from acoustic impedance and resistivity logs in the Shenhu area, South China Sea. Mar Petrol Geol 28:1625–1633. doi:10.1016/j.marpetgeo.2011.07.002

    Article  Google Scholar 

  • Warner M (1990) Absolute reflections from deep seismic reflections. Tectonophysics 173:15–23. doi:10.1016/0040-1951(90)90199-I

    Article  Google Scholar 

  • Wu NY, Yang SX, Wang HB, Liang JQ, Gong YH, Lu ZQ, Wu DD, Guan HX (2009a) Gas hydrate-bearing fluid influx sub-system for gas hydrate geological system in Shenhu Area, Northern South China Sea. Chin J Geophys 52:1641–1650. doi:10.3969/j.issn.0001-5733.2009.06.027 (in Chinese with English abstract)

    Google Scholar 

  • Wu SG, Dong DD, Yang SX, Zhang GX, Wang ZJ, Li QP, Liang JQ, Gong YH, Sun YB (2009b) Genetic model of the hydrate system in fine-grained sediments in the northern continental slope of South China Sea. Chin J Geophys 52:1849–1857. doi:10.3969/j.issn.0001-5733.2009.07.019 (in Chinese with English abstract)

    Google Scholar 

  • Xu HN, Yang SX, Zheng XD, Wang MJ, Wang JS (2010) Seismic identification of gas hydrate and its distribution in Shenhu area, South China Sea. Chin J Geophys 53:1271–1279. doi:10.3969/j.issn.0001-5733.2010.07.020 (in Chinese with English abstract)

    Google Scholar 

  • Yuan T, Hyndman RD, Spence GD, Desmons B (1996) Seismic velocity increase and deep-sea gas hydrate concentration above a bottom-simulating reflector on the northern Cascadia continental slope. J Geophys Res 101:13655–13671. doi:10.1029/96JB00102

    Article  Google Scholar 

  • Zhang GX, Huang YY, Zhu YH, Wu BH (2002) Prospect of gas hydrate resources in the South China Sea. Mar Geol Quat Geol 22:75–81 (in Chinese)

    Google Scholar 

  • Zhang HQ, Yang SX, Wu NY, Xu X, Melanie H, Peter S, Kelly R, Heather B, Gary H, GMGS-1 Science Team (2007) Successful and surprising results for China’s first gas hydrate drilling expedition, in Fire in the Ice, Methane Hydrate Newsl., Fall issue 6–9, Natl. Energy Technol. Lab., U.S. Dep. of Energy, Washington, D. C.

  • Zhang ZJ, McConnell DR, Han DH (2012) Rock physics-based seismic trace analysis of unconsolidated sediments containing gas hydrate and free gas in Green Canyon 955, Northern Gulf of Mexico. Mar Petrol Geol 34:119–133. doi:10.1016/j.marpetgeo.2011.11.004

    Article  Google Scholar 

  • Zhao SJ, Wu SG, Shi HS, Dong DD, Chen DX, Wang Y (2012) Structures and dynamic mechanism related to the Dongsha movement at the northern margin of South China Sea. Prog Geophys 27:1008–1019. doi:10.6038/j.issn.1004-2903.2012.03.022 (in Chinese with English abstract)

    Google Scholar 

  • Zhu WL, Huang BJ, Mi LJ, Wilkins R, Fu N, Xiao XM (2009) Geochemistry, origin, and deep-water exploration potential of natural gases in the Pearl River Mouth and Qiongdongnan basins, South China Sea. AAPG Bull 93:741–761. doi:10.1306/02170908099

    Article  Google Scholar 

  • Zhu M, Graham S, Pang X, McHargue T (2010) Characteristics of migrating submarine canyons from the middle Miocene to present: implications for paleoceanographic circulation, northern South China Sea. Mar Petrol Geol 27:307–319. doi:10.1016/j.marpetgeo.2009.05.005

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the science team of the gas hydrate program expedition Guangzhou Marine Geological Survey-1 (GMGS-1). Kalachand Sain provided many helpful suggestions in his review of the primary paper. Our research is supported by the Natural Science Foundation of China (41206043, 41276053 and 40930845), and the National Basic Research Program (2009CB219505). We also thank two anonymous reviewers for their helpful comments and suggestions which have contributed to a significant improvement in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Juan Wang.

Appendices

Appendix 1: Theory of elastic velocities calculation

Time-average weighted equation (modified after Lee et al. 1996)

Pearson et al. (1983) used the three-phase, time-average equation with concentration of hydrate in the pore space (as a fraction) for the velocity. Here we use saturation instead of concentration, and change the equation into

$$ \frac{1}{{V_{p} }} = \frac{\phi - S}{{V_{w} }} + \frac{S}{{V_{h} }} + \frac{1 - \phi }{{V_{m} }}, $$
(1)

where V p , V h , V w , and V m are compressional velocity of the hydrated sediment, the pure hydrate, the fluid, and the matrix, respectively. ϕ is porosity (as a fraction). S is saturation of hydrate.

Three-phase Wood equation (modified after Lee et al. 1996)

Like the Pearson et al. (1983) three-phase time-average equation, the three-phase Wood equation for hydrated is

$$ \frac{1}{{\rho V_{p}^{2} }} = \frac{\phi - S}{{\rho_{w} V_{w}^{2} }} + \frac{S}{{\rho_{h} V_{h}^{2} }} + \frac{1 - \phi }{{\rho_{m} V_{m}^{2} }}, $$
(2)

where ρ h , ρ w , and ρ m are the pure hydrate, the fluid, and the matrix, respectively. ρ, equal to (1-ϕ) ρ m  + (ϕ-S) ρ w h , is the bulk density of the sediment.

Three-phase weighted equation (modified after Lee et al. 1996)

Lee et al. (1996) proposed that three-phase weighted equation mean of Eqs. (1) and (2) can be written as

$$ \frac{1}{{V_{p} }} = \frac{{W\phi (1 - {S \mathord{\left/ {\vphantom {S \phi }} \right. \kern-0pt} \phi })^{n} }}{{V_{p1} }} + \frac{{1 - W\phi (1 - {S \mathord{\left/ {\vphantom {S \phi }} \right. \kern-0pt} \phi })^{n} }}{{V_{p2} }} , $$
(3)

where V p1 is P-wave velocity by the Wood equation, V p2 is P-wave velocity by the time-average equation, W is a weighted factor, and n is a constant simulating the rate of lithification with hydrate concentration.

Effective media theory (Ecker et al. 1998, 2000)

Ecker et al. (1998, 2000) used three rock-physics models (A, B, and C) to estimate elastic velocities of gas hydrate on the sediment. The performance of calculation includes two parts, sediments without and with gas hydrate.

Sediments without gas hydrate

The bulk and shear elastic moduli of the dry frame of sediment without gas hydrate (K dry and G dry , respectively) can be calculated by

$$ K_{dry} = \left[ {\frac{{{\phi \mathord{\left/ {\vphantom {\phi {\phi_{c} }}} \right. \kern-0pt} {\phi_{c} }}}}{{K_{HM} + \tfrac{4}{3}G_{HM} }} + \frac{{1 - {\phi \mathord{\left/ {\vphantom {\phi {\phi_{c} }}} \right. \kern-0pt} {\phi_{c} }}}}{{K + \tfrac{4}{3}G_{HM} }}} \right]^{ - 1} - \frac{4}{3}G_{HM} , $$
(4a)
$$ G_{dry} = \left[ {\frac{{{\phi \mathord{\left/ {\vphantom {\phi {\phi_{c} }}} \right. \kern-0pt} {\phi_{c} }}}}{{G_{HM} + Z}} + \frac{{1 - {\phi \mathord{\left/ {\vphantom {\phi {\phi_{c} }}} \right. \kern-0pt} {\phi_{c} }}}}{G + Z}} \right]^{ - 1} - Z ; $$
(4b)
$$ Z = \frac{{G_{HM} }}{6}\left[ {\frac{{9K_{HM} + 8G_{HM} }}{{K_{HM} + 2G_{HM} }}} \right];\phi < \phi_{c} ; $$
(5)
$$ K_{dry} = \left[ {\frac{{(1 - {{\phi )} \mathord{\left/ {\vphantom {{\phi )} {(1 - \phi_{c} )}}} \right. \kern-0pt} {(1 - \phi_{c} )}}}}{{K_{HM} + \tfrac{4}{3}G_{HM} }} + \frac{{({{\phi - \phi_{c} )} \mathord{\left/ {\vphantom {{\phi - \phi_{c} )} {(1 - \phi_{c} )}}} \right. \kern-0pt} {(1 - \phi_{c} )}}}}{{\tfrac{4}{3}G_{HM} }}} \right]^{ - 1} - \frac{4}{3}G_{HM} , $$
(6a)
$$ G_{dry} = \left[ {\frac{{(1 - \phi )/(1 - \phi_{c} )}}{{G_{HM} + Z}} + \frac{{(\phi - \phi_{c} )/(1 - \phi_{c} )}}{Z}} \right]^{ - 1} - Z;\,\phi \ge \phi_{c} ; $$
(6b)

where ϕ is porosity; ϕ c is the porosity of a dense random sphere pack (about 36 %); K and G are the bulk and shear moduli of the mineral phase, respectively. They can be calculated from the moduli of m mineral constituents (K i and G i ) using Hill’s average:

$$ K = \frac{1}{2}\left[ {\sum\limits_{i = 1}^{m} {f_{i} K_{i} + \left( {\sum\limits_{i = 1}^{m} {\frac{{f_{i} }}{{K_{i} }}} } \right)^{ - 1} } } \right] , $$
(7a)
$$ G = \frac{1}{2}\left[ {\sum\limits_{i = 1}^{m} {f_{i} G_{i} + \left( {\sum\limits_{i = 1}^{m} {\frac{{f_{i} }}{{G_{i} }}} } \right)^{ - 1} } } \right] ; $$
(7b)

where f i is the volumetric fraction of the ith component in the solid phase. K HM and G HM are calculated from the Hertz-Mindlin theory as

$$ K_{HM} = \left[ {\frac{{G^{2} n^{2} \left( {1 - \phi_{c} } \right)^{2} }}{{18\pi^{2} \left( {1 - \nu } \right)^{2} }}P} \right]^{\frac{1}{3}} , $$
(8a)
$$ G_{HM} = \frac{5 - 4\nu }{5(2 - \nu )}\left[ {\frac{{3G^{2} n^{2} \left( {1 - \phi_{c} } \right)^{2} }}{{2\pi^{2} \left( {1 - \nu } \right)^{2} }}P} \right]^{\frac{1}{3}} ; $$
(8b)

where ν is the Poisson’s ratio of the mineral phase calculated from K and G; n is the average number of contacts per grain taken as 8.5; P is the effective pressure

$$ P = (1 - \phi )(\rho_{s} - \rho_{f} )gh , $$
(9)

where ρ s and ρ f are the densities of the solid and fluid phase, respectively; g is gravity acceleration; and h is depth below seafloor.

The subsequent saturation sediment bulk and shear moduli (K sat and G sat , respectively) are calculated using the Gassmann equation:

$$ K_{sat} = K\frac{{\phi K_{dry} - {{(1 + \phi )K_{f} K_{dry} } \mathord{\left/ {\vphantom {{(1 + \phi )K_{f} K_{dry} } K}} \right. \kern-0pt} K} + K_{f} }}{{(1 - \phi )K_{f} + \phi K - {{K_{f} K_{dry} } \mathord{\left/ {\vphantom {{K_{f} K_{dry} } K}} \right. \kern-0pt} K}}} , $$
(10a)
$$ G_{sat} = G_{dry} ; $$
(10b)

where K f is the bulk modulus of the pore fluid which, at saturation S w , is the isostress average of those of water (K w ) and gas (K g ):

$$ K_{f} = \left[ {\frac{{S_{w} }}{{K_{w} }} + \frac{{(1 - S_{w} )}}{{K_{g} }}} \right]^{ - 1} . $$
(11)

Sediments with gas hydrate

Model A: Hydrate is part of pore fluid

In this case, the bulk modulus of the fluid is isostress average of those of water and hydrate (K h ):

$$ K_{f} = \left[ {\frac{{S_{w} }}{{K_{w} }} + \frac{{(1 - S_{w} )}}{{K_{h} }}} \right]^{ - 1} . $$
(12)

Model B: Hydrate is part of the dry sediment frame

In this case, gas hydrate acts to (a) reduce the porosity and (b) alter the elastic properties of the solid phase. The reduced porosity ϕ r is

$$ \phi_{\text{r}} = \phi Sw = \phi \left( { 1- S_{h} } \right), $$
(13)

where S h is gas hydrate saturation, and the elastic moduli of the altered solid phase are calculated using Hill’s average as

$$ K = \frac{1}{2}\left( {f_{h} K_{h} + (1 - f_{h} )K_{s} + \left[ {\frac{{f_{h} }}{{K_{h} }} + \frac{{(1 - f_{h} )}}{{K_{s} }}} \right]^{ - 1} } \right) , $$
(14a)
$$ G = \frac{1}{2}\left( {f_{h} G_{h} + (1 - f_{h} )G_{s} + \left[ {\frac{{f_{h} }}{{G_{h} }} + \frac{{(1 - f_{h} )}}{{G_{s} }}} \right]^{ - 1} } \right) ; $$
(14b)
$$ f_{h} = \frac{{\phi (1 - S_{w} )}}{{1 - \phi S_{w} }} ; $$
(14c)

where K s and G s are the solid bulk and shear moduli of the original sediment’s solid phase, respectively, and K h and G h are those of pure gas hydrate. Those altered porosity and elastic moduli are used as input to the above model for the moduli of the dry frame.

Finally, the elastic wave velocities are calculated from the elastic moduli and bulk density ρ B as

$$ V_{p} = \sqrt {{{\left( {K_{sat} + \frac{4}{3}G_{sat} } \right)} \mathord{\left/ {\vphantom {{\left( {K_{sat} + \frac{4}{3}G_{sat} } \right)} {\rho_{B} }}} \right. \kern-0pt} {\rho_{B} }}} , $$
(15a)
$$ V_{s} = \sqrt {{{G_{sat} } \mathord{\left/ {\vphantom {{G_{sat} } {\rho_{B} }}} \right. \kern-0pt} {\rho_{B} }}} . $$
(15b)

For patchy saturation, the effective bulk modulus K sat of the volume is

$$ \left( {K_{sat} + {{4G} \mathord{\left/ {\vphantom {{4G} 3}} \right. \kern-0pt} 3}} \right)^{ - 1} = S_{w} \left( {K_{1} + {{4G} \mathord{\left/ {\vphantom {{4G} 3}} \right. \kern-0pt} 3}} \right)^{ - 1} + \left( {1 - S_{w} } \right)\left( {K_{0} + {{4G} \mathord{\left/ {\vphantom {{4G} 3}} \right. \kern-0pt} 3}} \right)^{ - 1} $$
(16)

where K1 and K0 are the bulk moduli of the rock at Sw = 1 and Sw = 0, respectively (Dvorkin et al. 1999).

Model C is not used because it is not consistent with the gas hydrate state in Shenhu area, northern South China Sea.

Empirical relationship between P-wave and S-wave velocity

$$ V_{s} = V_{p} \left[ {\alpha (1 - \phi ) + \beta S} \right] $$
(17)

with α = V s /V p |matrix, β = V s /V p |hydrate.

Appendix 2: Exact Zoeppritz equations for P–P reflection coefficients

Exact Zeoppritz’s equation (Aki and Richards 2002)

The exact formulate for P–P reflection coefficients can be expressed as (Aki and Richards 2002)

$$ R_{pp} (\theta ) = {{\left[ {\left( {b\frac{{\cos i_{1} }}{{\alpha_{1} }} - c\frac{{\cos i_{2} }}{{\alpha_{2} }}} \right)F - \left( {a + d\frac{{\cos i_{1} }}{{\alpha_{1} }}\frac{{\cos j_{2} }}{{\beta_{2} }}} \right)Hp^{2} } \right]} \mathord{\left/ {\vphantom {{\left[ {\left( {b\frac{{\cos i_{1} }}{{\alpha_{1} }} - c\frac{{\cos i_{2} }}{{\alpha_{2} }}} \right)F - \left( {a + d\frac{{\cos i_{1} }}{{\alpha_{1} }}\frac{{\cos j_{2} }}{{\beta_{2} }}} \right)Hp^{2} } \right]} D}} \right. \kern-0pt} D}, $$
(18)
$$ \begin{aligned} a & = \rho_{2} (1 - 2\beta_{2}^{2} p^{2} ) - \rho_{1} (1 - 2\beta_{1}^{2} p^{2} ),\quad b = \rho_{2} (1 - 2\beta_{2}^{2} p^{2} ) + 2\rho_{1} \beta_{1}^{2} p^{2} , \\ c & = \rho_{1} (1 - 2\beta_{1}^{2} p^{2} ) + 2\rho_{2} \beta_{2}^{2} p^{2} ,\quad d = 2(\rho_{2} \beta_{2}^{2} - \rho_{1} \beta_{1}^{2} ). \\ \end{aligned} $$
(19)
$$ \begin{aligned} E & = b\frac{{\cos i_{1} }}{{\alpha_{1} }} + c\frac{{\cos i_{2} }}{{\alpha_{2} }},\quad F = b\frac{{\cos j_{1} }}{{\beta_{1} }} + c\frac{{\cos j_{2} }}{{\beta_{2} }}, \\ G & = a - d\frac{{\cos i_{1} }}{{\alpha_{1} }}\frac{{\cos j_{2} }}{{\beta_{2} }},\quad H = a - d\frac{{\cos i_{2} }}{{\alpha_{2} }}\frac{{\cos j_{1} }}{{\beta_{1} }}, \\ D & = EF + GHp^{2} . \\ \end{aligned} $$
(20)

where i 1, i 2, j 1, and j 2 are defined in terms of the ray trajectories, reflection and transmission angles of P-wave and S-wave, respectively. ρ 1, α 1, β 1, ρ 2, α 2, and β 2 are the density, P-wave and S-wave velocity for the upper and lower media of the interface.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, J., Wang, XJ., Wu, SG. et al. AVO analysis of BSR to assess free gas within fine-grained sediments in the Shenhu area, South China Sea. Mar Geophys Res 35, 125–140 (2014). https://doi.org/10.1007/s11001-014-9214-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11001-014-9214-z

Keywords

Navigation