Skip to main content
Log in

Prediction of Young’s modulus of hexagonal monolayer sheets based on molecular mechanics

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

The present work investigates Young’s modulus of hexagonal monolayer sheets based on molecular mechanics. A repeating unit cell of the sheet has been chosen. Harmonic force field is adopted to model atomic interactions. The total energy of the unit cell is established as a function of the force constants and atomic displacements. A closed-form expression is formulated for Young’s modulus of the sheet by minimizing the total energy of the unit cell under uniaxial tension in equilibrium state. Molecular dynamics simulations were also carried out to consider Young’s modulus of graphene, boron nitride, silicon carbide, aluminum nitride, and boron antimonide monolayer sheets. The accuracy of the proposed formula is verified and discussed with results obtained by molecular dynamics simulations and available data in the literature for these 5 sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrew, R.C., Mapasha, R.E., Ukpong, A.M., Chetty, N.: Mechanical properties of graphene and boronitrene. Phys. Rev. B 85, 125428 (2012)

    Article  Google Scholar 

  • Arroyo, M., Belytschko, T.: An atomistic-based finite deformation membrane for single layer crystalline films. J. Mech. Phys. Solids 50, 1941–1977 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Arroyo, M., Belytschko, T.: Finite crystal elasticity of carbon nanotubes based on the exponential cauchy-born rule. Phys. Rev. B 69, 115415 (2004)

    Article  Google Scholar 

  • Baumeier, B., Krüger, P., Pollmann, J.: Structural, elastic, and electronic properties of SiC, BN, and BeO nanotubes. Phys. Rev. B 76, 085407 (2007)

    Article  Google Scholar 

  • Benkabou, F., Certier, M., Aourag, H.: Elastic Properties of Zinc-blende GaN, AlN and InN from Molecular Dynamics. Mol. Simul. 29, 201 (2003)

    Article  Google Scholar 

  • Berinskii, I.E., Borodich, F.M.: Elastic in-plane properties of 2D linearized models of graphene. Mech. Mater. 62, 60–68 (2013)

    Article  Google Scholar 

  • Berinskii, I.E., Krivtsov, A.M.: On using many-particle interatomic potentials to compute elastic properties of graphene and diamond. Mech. Solids 45, 815 (2010)

    Article  Google Scholar 

  • Boldrin, L., Scarpa, F., Chowdhury, R., Adhikari, S.: Effective mechanical properties of hexagonal boron nitride nanosheets. Nanotechnology 22, 505702 (2011)

    Article  Google Scholar 

  • Bosak, A., Serrano, J., Krisch, M., Watanabe, K., Taniguchi, T., Kanda, H.: Elasticity of hexagonal boron nitride: inelastic x-ray scattering measurements. Phys. Rev. B 73, 041402R (2006)

    Article  Google Scholar 

  • Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42(15), 9458 (1990)

    Article  Google Scholar 

  • Burkert, U., Allinger, N.L.: Molecular Mechanics. ACS Monograph 177. American Chemical Society, Washington, DC (1982)

    Google Scholar 

  • Caillerie, D., Mourad, A., Raoult, A.: Discrete homogenization in graphene sheet modeling. J. Elast. 84, 33–68 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Chang, T.: A molecular based anisotropic shell model for single-walled carbon nanotubes. J. Mech. Phys. Solids 58, 1422–1433 (2010)

    Article  MathSciNet  Google Scholar 

  • Chang, T., Gao, H.: Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J. Mech. Phys. Solids 51, 1059–1074 (2003)

    Article  MATH  Google Scholar 

  • Cheng, Y., Shi, G.: The prediction of mechanical properties of graphene by molecular mechanics and structural mechanics method. Adv. Mater. Res. 583, 403–407 (2012)

    Article  Google Scholar 

  • Chopra, N.G., Zettl, A.: Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Commun. 105(5), 297 (1998)

    Article  Google Scholar 

  • Claeyssens, F., Freeman, C.L., Allan, N.L., Sun, Y., Ashfold, M.N.R., Harding, J.H.: Growth of ZnO thin films-experiment and theory. J. Mater. Chem. 15, 139–148 (2005)

    Article  Google Scholar 

  • Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)

    Article  Google Scholar 

  • Erhart, P., Albe, K.: Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide. Phys. Rev. B 71, 035211 (2005)

    Article  Google Scholar 

  • Golberg, D., Costa, P., Lourie, O., Mitome, M., Bai, X., Kurashima, K., Zhi, C., Tang, C., Bando, Y.: Direct force measurements and kinking under elastic deformation of individual multiwalled boron nitride nanotubes. Nano Lett. 7, 2146 (2007)

    Article  Google Scholar 

  • Hansson, A., Mota, F.B., Rivelino, R.: Metallic behavior in low-dimensional honeycomb SiB crystals: a first-principles prediction of atomic structure and electronic properties. Phys. Rev. B 86, 195416 (2012)

    Article  Google Scholar 

  • Hernández, E., Goze, C., Bernier, P., Rubio, A.: Elastic properties of C and BxCyNz composite nanotubes. Phys. Rev. Lett. 80, 4502 (1998)

    Article  Google Scholar 

  • Huang, Y., Wu, J., Hwang, K.C.: Thickness of graphene and single-wall carbon nanotubes. Phys. Rev. B 74, 245413 (2006)

    Article  Google Scholar 

  • Jiang, H., Zhang, P., Liu, B., Huang, Y., Geubelle, P.H., Gao, H., Hwang, K.C.: The effect of nanotube radius on the constitutive model for carbon nanotubes. Comput. Mater. Sci. 28, 429–442 (2003)

    Article  Google Scholar 

  • Jiang, L., Guo, W.: A molecular mechanics study on size-dependent elastic properties of single-walled boron nitride nanotubes. J. Mech. Phys. Solids 59, 1204–1213 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Kınacı, A., Haskins, J.B., Sevik, C., Cagın, T.: Thermal conductivity of BN-C nanostructures. Phys. Rev. B 86, 115410 (2012)

    Article  Google Scholar 

  • Kudin, K.N., Scuseria, G.E., Yakobson, B.I.: C2F, BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B 64, 235406 (2001)

    Article  Google Scholar 

  • Le, M.Q.: Atomistic study on the tensile properties of hexagonal AlN, BN, GaN, InN and SiC sheets. J. Comput. Theor. Nanosci. 11, 1458–1464 (2014a)

    Article  Google Scholar 

  • Le, M.Q.: Young’s modulus prediction of hexagonal nanosheets and nanotubes based on dimensional analysis and atomistic simulations. Meccanica 49(7), 1709–1719 (2014b)

    Article  MATH  Google Scholar 

  • Leach, A.R., Leach, A.R.: Molecular Modelling Principles and Applications, chap. 4, 2nd edn, p. 165. Prentice Hal, Harlow (2001)

    Google Scholar 

  • Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385 (2008)

    Article  Google Scholar 

  • Lei, X., Natsuki, T., Shi, J., Ni, Q.Q.: Analysis of carbon nanotubes on the mechanical properties at atomic scale. J. Nanomater. 2011, 1 (2011)

    Article  Google Scholar 

  • Li, C., Chou, T.W.: A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40, 2487–2499 (2003)

    Article  MATH  Google Scholar 

  • Lin, S.S.: Light-emitting two-dimensional ultrathin silicon carbide. J. Phys. Chem. C 116, 3951 (2012)

    Article  Google Scholar 

  • Natsuki, T., Tantrakarn, K., Endo, M.: Prediction of elastic properties for single-walled carbon nanotubes. Carbon 42, 39–45 (2004)

    Article  Google Scholar 

  • Odegard, G.M., Gates, T.S., Nicholson, L.M., Wise, K.E.: Equivalent-continuum modeling of nano-structured materials. Compos. Sci. Technol. 62, 1869–1880 (2002)

    Article  Google Scholar 

  • Oh, E.S.: Elastic properties of boron-nitride nanotubes through the con- tinuum lattice approach. Mater. Lett. 64, 859 (2010)

    Article  Google Scholar 

  • Oh, E.S.: Elastic properties of various boron-nitride structures. Met. Mater. Int. 17, 21 (2011)

    Article  Google Scholar 

  • Pacilé, D., Meyer, J.C., Girit, Ç.Ö., Zettl, A.: The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 92, 133107 (2008)

    Article  Google Scholar 

  • Pantano, A., Parks, D.M., Boyce, M.C.: Mechanics of deformation of single- and multi-wall carbon nanotubes. J. Mech. Phys. Solids 52, 789 (2004)

    Article  MATH  Google Scholar 

  • Peng, Q., Ji, W., De, S.: Mechanical properties of the hexagonal boron nitride monolayer: ab initio study. Comput. Mater. Sci. 56, 11 (2012)

    Article  Google Scholar 

  • Plimpton, S.J.: Fast parallel algorithms for short—range molecular dynamics. J. Comp. Phys. 117, 1 (1995)

    Article  MATH  Google Scholar 

  • Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard III, W.A., Skid, W.M.: UFF, A full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114(25), 10024 (1992)

    Article  Google Scholar 

  • Rappe, A.K., Casewit, C.J.: Molecular Mechanics Across Chemistry. University Science Books, California (1997)

    Google Scholar 

  • Reddy, C.D., Rajendran, S., Liew, K.M.: Equilibrium configuration and continuum elastic properties of finite sized graphene. Nanotechnology 17(3), 864–870 (2006)

    Article  Google Scholar 

  • Ru, C.Q.: Chirality-dependent mechanical behavior of carbon nanotubes based on an anisotropic elastic shell model. Math. Mech. Solids 14, 88–101 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Scarpa, F., Adhikari, S.: A mechanical equivalence for Poisson’s ratio and thickness of C–C bonds in single wall carbon nanotubes. J. Phys. D Appl. Phys. 41, 085306 (2008)

    Article  Google Scholar 

  • Sahin, H., Cahangirov, S., Topsakal, M., Bekaroglu, E., Akturk, E., Senger, R.T., Ciraci, S.: Monolayer honeycomb structures of group-IV elements and III-V binary compounds: first-principles calculations. Phys. Rev. B 80, 155453 (2009)

    Article  Google Scholar 

  • Scarpa, F., Adhikari, S., Phani, A.S.: Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology 20, 065709 (2009)

    Article  Google Scholar 

  • Schneider, T., Stoll, E.: Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys. Rev. B 17(3), 1302–1322 (1978)

    Article  Google Scholar 

  • Shi, Y., Hamsen, C., Jia, X., Kim, K.K., Reina, A., Hofmann, M., Hsu, A.L., Zhang, K., Li, H., Juang, Z.Y., Dresselhaus, M.S., Li, L.J., Kong, J.: Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 10, 4134 (2010)

    Article  Google Scholar 

  • Shokrieh, M.M., Rafiee, R.: Prediction of Young’s modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach. Mater. Des. 31, 790–795 (2010)

    Article  Google Scholar 

  • Song, L., Ci, L., Lu, H., Sorokin, P.B., Jin, C., Ni, J., Kvashnin, A.G., Kvashnin, D.G., Lou, J., Yakobson, B.I., Ajayan, P.M.: Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209 (2010)

    Article  Google Scholar 

  • Suryavanshi, A.P., Yu, M.F., Wen, J., Tang, C., Bando, Y.: Elastic modulus and resonance behavior of boron nitride nanotubes. Appl. Phys. Lett. 84, 2527 (2004)

    Article  Google Scholar 

  • Topsakal, M., Aktürk, E., Ciraci, S.: First-principles study of two- and one-dimensional honeycomb structures of boron nitride. Phys. Rev. B 79, 115442 (2009)

    Article  Google Scholar 

  • Tserpes, K.I., Papanikos, P.: Finite element modeling of single-walled carbon nanotubes. Compos. B 36, 468–477 (2005)

    Article  Google Scholar 

  • Tu, Z.C., Hu, X.: Elasticity and piezoelectricity of zinc oxide crystals, single layers, and possible single-walled nanotubes. Phys. Rev. B 74, 035434 (2006)

    Article  Google Scholar 

  • Tu, Z.C., Ou-Yang, Z.: Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young’s moduli dependent on layer number. Phys. Rev. B 65, 233407 (2002)

    Article  Google Scholar 

  • Verma, V., Jindal, V.K., Dharamvir, K.: Elastic moduli of a boron nitride nanotube. Nanotechnology 18, 435711 (2007)

    Article  Google Scholar 

  • Yakobson, B.I., Brabec, C.J., Bernholc, J.: Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett. 76(14), 2511 (1996)

    Article  Google Scholar 

  • Zhang, C.W.: First-principles study on electronic structures and magnetic properties of AlN nanosheets and nanoribbons. J. Appl. Phys. 111, 043702 (2012)

    Article  Google Scholar 

  • Zhang, H.W., Wang, J.B., Guo, X.: Predicting the elastic properties of single-walled carbon nanotubes. J. Mech. Phys. Solids 53, 1929–1950 (2005)

    Article  MATH  Google Scholar 

  • Zhang, P., Huang, Y., Geubelle, P.H.: The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials. Int. J. Solids Struct. 39, 3893–3906 (2002)

    Article  MATH  Google Scholar 

  • Zhao, J., Wang, L., Jiang, J.W., Wang, Z., Guo, W., Rabczuk, T.: A comparative study of two molecular mechanics models based on harmonic potentials. J. Appl. Phys. 113(6), 063509 (2013)

    Article  Google Scholar 

  • Zhou, X., Zhou, J., Ou-Yang, Z.: Strain energy and Young’s modulus of single-wall carbon nanotubes calculated from electronic energy-band theory. Phys. Rev. B 62(20), 13692 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under the grant number: 107.02–2014.03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minh-Quy Le.

Appendix

Appendix

Relationships between variations of bond length and angle with displacements of atoms

The bond length l ij can be determined by coordinates (x i, y i) of atoms i and (x j, y j) of atoms j as below:

$$ \left( {l_{ij} } \right)^{2} = \left( {x_{j} - x_{i} } \right)^{2} + \left( {y_{j} - y_{i} } \right)^{2} $$
(18)

Differentiating both sides of Eq. (18) gives:

$$ l_{ij} \delta l_{ij} = \left( {x_{j} - x_{i} } \right)\left( {\delta x_{j} - \delta x_{i} } \right) + \left( {y_{j} - y_{i} } \right)\left( {\delta y_{j} - \delta y_{i} } \right) $$
(19)

It is noted that δx i  = u i and δy i  = v i are displacements of atom i in the x and y-directions, respectively. Equation (19) is rewritten as below:

$$ \delta l_{ij} = \frac{1}{{l_{ij} }}\left[ {\left( {x_{j} - x_{i} } \right)\left( {u_{j} - u_{i} } \right) + \left( {y_{j} - y_{i} } \right)\left( {v_{j} - v_{i} } \right)} \right] $$
(20)

At the initial state, we have l ij  = l 0. Using Eq. (20) and regarding the conditions u 4 = u 5 = v 4 = v 5 = 0,δl 41 andδl 52 can be expressed by Eq. (7a) and (7b), respectively.

Regarding the geometric relations in Fig. 1c, we have

$$ AH = AB'\sin \left( {{{\alpha_{1} } \mathord{\left/ {\vphantom {{\alpha_{1} } {2 + \delta \alpha }}} \right. \kern-0pt} {2 + \delta \alpha }}} \right) $$
(21)
$$ AH = l_{0} \sin \left( {{{\alpha_{1} } \mathord{\left/ {\vphantom {{\alpha_{1} } 2}} \right. \kern-0pt} 2}} \right) + u_{1} $$
(22)
$$ AB' = l_{0} + \delta l_{41} $$
(23)

It is noted that sin (α 1/2 + δα) ≈ sin (α 1/2) + δα cos (α 1/2)for very small δα. Substituting Eq. (22) and (23) into Eq. (21) yields

$$ \delta \alpha \left[ {l_{0} \cos \left( {{{\alpha_{1} } \mathord{\left/ {\vphantom {{\alpha_{1} } 2}} \right. \kern-0pt} 2}} \right)} \right] + \delta l_{41} \sin \left( {{{\alpha_{1} } \mathord{\left/ {\vphantom {{\alpha_{1} } 2}} \right. \kern-0pt} 2}} \right) = u_{1} . $$
(24)

Noting that α 1 = 1200, Eq. (7c) can be deduced by combining Eq. (7a) and (24). By conducting a similar analysis as above, Eq. (7d) can be also obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, MQ. Prediction of Young’s modulus of hexagonal monolayer sheets based on molecular mechanics. Int J Mech Mater Des 11, 15–24 (2015). https://doi.org/10.1007/s10999-014-9271-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-014-9271-0

Keywords

Navigation