Skip to main content
Log in

Young’s modulus prediction of hexagonal nanosheets and nanotubes based on dimensional analysis and atomistic simulations

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The present work investigates Young’s modulus of hexagonal nanosheets and nanotubes based on dimensional analysis and molecular mechanics. Using second derivatives of the strain energy density revealed from molecular dynamics simulations at 0 K (i.e., molecular mechanics) with harmonic potentials for various combinations of force constants, Young’s modulus have been computed for single-walled armchair and zigzag nanotubes of different radii. This parametric study with the aid of dimensional analysis allows explicitly establishing Young’s modulus of (n, n) armchair and (n, 0) zigzag nanotubes as functions of the force constants, bond length and chiral index n. Proposed formulae are applied to estimate Young’s modulus of graphene, boron nitride, silicon carbide sheets and their nanotubes. The accuracy of the proposed formulae are verified and discussed with available data in the literature for these three sheets and their nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56

    Article  ADS  Google Scholar 

  2. Fan Y (2011) Formation of crystalline AlN nanotubes by a roll-up approach. Mater Lett 65:1900–1902

    Article  Google Scholar 

  3. Sorokin PB, Fedorov AS, Chernozatonskiĭ LA (2006) Structure and properties of BeO nanotubes. Phys Solid State 48:398–401

    Article  ADS  Google Scholar 

  4. Chopra NG, Luyken RJ, Cherry K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Boron nitride nanotubes. Science 269:966–967

    Article  ADS  Google Scholar 

  5. Zhi C, Bando Y, Tang C, Golberg D (2010) Boron nitride nanotubes. Mater Sci Eng R 70:92–111

    Article  Google Scholar 

  6. Sun XH, Li CP, Wong WK, Wong NB, Lee CS, Lee ST, Teo BK (2002) Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes. J Am Chem Soc 124:14464

    Article  Google Scholar 

  7. Pacilé D, Meyer JC, Girit ÇÖ, Zettl A (2008) The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl Phys Lett 92:133107

    Article  ADS  Google Scholar 

  8. Shi Y, Hamsen C, Jia X, Kim KK, Reina A, Hofmann M, Hsu AL, Zhang K, Li H, Juang ZY, Dresselhaus MS, Li LJ, Kong J (2010) Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett 10:4134

    Article  ADS  Google Scholar 

  9. Song L, Ci L, Lu H, Sorokin PB, Jin C, Ni J, Kvashnin AG, Kvashnin DG, Lou J, Yakobson BI, Ajayan PM (2010) Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett 10:3209

    Article  ADS  Google Scholar 

  10. Lin SS (2012) Light-emitting two-dimensional ultrathin silicon carbide. J Phys Chem C 116:3951

    Article  Google Scholar 

  11. Chang T, Gao H (2003) Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J Mech Phys Solids 51:1059–1074

    Article  ADS  MATH  Google Scholar 

  12. Natsuki T, Tantrakarn K, Endo M (2004) Prediction of elastic properties for single-walled carbon nanotubes. Carbon 42:39–45

    Article  Google Scholar 

  13. Jiang L, Guo W (2011) A molecular mechanics study on size-dependent elastic properties of single-walled boron nitride nanotubes. J Mech Phys Solids 59:1204–1213

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Cheng Y, Shi G (2012) The prediction of mechanical properties of graphene by molecular mechanics and structural mechanics method. Adv Mater Res 583:403–407

    Article  Google Scholar 

  15. Berinskii IE, Borodich FM (2013) Elastic in-plane properties of 2D linearized models of graphene. Mech Mater 62:60–68

    Article  Google Scholar 

  16. Odegard GM, Gates TS, Nicholson LM, Wise KE (2002) Equivalent-continuum modeling of nano-structured materials. Compos Sci Technol 62:1869–1880

    Article  Google Scholar 

  17. Li C, Chou TW (2003) A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Struct 40:2487–2499

    Article  MATH  Google Scholar 

  18. Tserpes KI, Papanikos P (2005) Finite element modeling of single-walled carbon nanotubes. Compos B 36:468–477

    Article  Google Scholar 

  19. Scarpa F, Adhikari S, Phani AS (2009) Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology 20:065709

    Article  ADS  Google Scholar 

  20. Shokrieh MM, Rafiee R (2010) Prediction of Young’s modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach. Mater Des 31:790–795

    Article  Google Scholar 

  21. Lei X, Natsuki T, Shi J, Ni QQ (2011) Analysis of carbon nanotubes on the mechanical properties at atomic scale. J Nanomater 2011:1

    Article  Google Scholar 

  22. Boldrin L, Scarpa F, Chowdhury R, Adhikari S (2011) Effective mechanical properties of hexagonal boron nitride nanosheets. Nanotechnology 22:505702

    Article  Google Scholar 

  23. Scarpa F, Adhikari S (2008) A mechanical equivalence for Poisson’s ratio and thickness of C–C bonds in single wall carbon nanotubes. J Phys D Appl Phys 41(8):085306

    Article  ADS  Google Scholar 

  24. Liu X, Metcalf TH, Robinson JT, Houston BH, Scarpa F (2012) Shear modulus of monolayer graphene prepared by chemical vapor deposition. Nano Lett 12(2):1013–1017

    Article  ADS  Google Scholar 

  25. Kudin KN, Scuseria GE, Yakobson BI (2001) C2F, BN, and C nanoshell elasticity from ab initio computations. Phys Rev B 64:235406

    Article  ADS  Google Scholar 

  26. Tu ZC, Ou-Yang Z (2002) Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young’s moduli dependent on layer number. Phys Rev B 65:233407

    Article  ADS  Google Scholar 

  27. Pantano A, Parks DM, Boyce MC (2004) Mechanics of deformation of single- and multi-wall carbon nanotubes. J Mech Phys Solids 52:789

    Article  ADS  MATH  Google Scholar 

  28. Huang Y, Wu J, Hwang KC (2006) Thickness of graphene and single-wall carbon nanotubes. Phys Rev B 74:245413

    Article  ADS  Google Scholar 

  29. Ru CQ (2009) Chirality-dependent mechanical behavior of carbon nanotubes based on an anisotropic elastic shell model. Math Mech Solids 14:88–101

    Article  MATH  MathSciNet  Google Scholar 

  30. Chang T (2010) A molecular based anisotropic shell model for single-walled carbon nanotubes. J Mech Phys Solids 58:1422–1433

    Article  ADS  MathSciNet  Google Scholar 

  31. Arroyo M, Belytschko T (2002) An atomistic-based finite deformation membrane for single layer crystalline films. J Mech Phys Solids 50:1941–1977

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Zhang P, Huang Y, Geubelle PH (2002) The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials. Int J Solids Struct 39:3893–3906

    Article  MATH  Google Scholar 

  33. Jiang H, Zhang P, Liu B, Huang Y, Geubelle PH, Gao H, Hwang KC (2003) The effect of nanotube radius on the constitutive model for carbon nanotubes. Comput Mater Sci 28:429–442

    Article  Google Scholar 

  34. Zhang HW, Wang JB, Guo X (2005) Predicting the elastic properties of single-walled carbon nanotubes. J Mech Phys Solids 53:1929–1950

    Article  ADS  MATH  Google Scholar 

  35. Nasdala L, Kempe A, Rolfes R (2012) Are finite elements appropriate for use in molecular dynamic simulations. Compos Sci Technol 72:989–1000

    Article  Google Scholar 

  36. Zhao J, Wang L, Jiang JW, Wang Z, Guo W, Rabczuk T (2013) A comparative study of two molecular mechanics models based on harmonic potentials. J Appl Phys 113:063509

    Article  ADS  Google Scholar 

  37. Burkert U, Allinger NL (1982) Molecular mechanics. ACS Monograph 177. American Chemical Society, Washington, DC

  38. Leach AR (2001) Molecular modelling principles and applications, chapter 4, 2nd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  39. Rappe AK, Casewit CJ (1997) Molecular mechanics across chemistry. University Science Books

  40. Barenblatt GI (1996) Scaling, self-similarity, and intermediate asymptotics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  41. Dresselhaus MS, Dresselhaus G, Saito R (1995) Physics of carbon nanotubes. Carbon 33:883–891

    Article  Google Scholar 

  42. Plimpton SJ (1995) Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 117:1

    Article  ADS  MATH  Google Scholar 

  43. Mirnezhad M, Modarresi M, Ansari R, Roknabadi MR (2012) Effect of temperature on Young’s modulus of graphene. J Therm Stress 35:913–920

    Article  Google Scholar 

  44. Mirnezhad M, Ansari R, Shahabodini A (2013) Temperature effect on Young’s modulus of boron nitride sheets. J Therm Stress 36:152–159

    Article  Google Scholar 

  45. Schneider T, Stoll E (1978) Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys Rev B 17:1302–1322

    Article  ADS  Google Scholar 

  46. Le MQ, Batra RC (2013) Single-edge crack growth in graphene sheets under tension. Comput Mater Sci 69:381–388

    Article  Google Scholar 

  47. Le MQ, Batra RC (2014) Crack propagation in pre-strained single layer graphene sheets. Comput Mater Sci 84:238–243

    Article  Google Scholar 

  48. Rappe AK, Casewit CJ, Colwell KS, Goddard WA III, Skid WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114(25):10024

    Article  Google Scholar 

  49. Claeyssens F, Freeman CL, Allan NL, Sun Y, Ashfold MNR, Harding JH (2005) Growth of ZnO thin films—experiment and theory. J Mater Chem 15:139–148

    Article  Google Scholar 

  50. Tu ZC, Hu X (2006) Elasticity and piezoelectricity of zinc oxide crystals, single layers, and possible single-walled nanotubes. Phys Rev B 74:035434

    Article  ADS  Google Scholar 

  51. Sahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger RT, Ciraci S (2009) Monolayer honeycomb structures of group-IV elements and III–V binary compounds: first-principles calculations. Phys Rev B 80:155453

    Article  ADS  Google Scholar 

  52. Topsakal M, Aktürk E, Ciraci S (2009) First-principles study of two- and one-dimensional honeycomb structures of boron nitride. Phys Rev B 79:115442

    Article  ADS  Google Scholar 

  53. Zhang CW (2012) First-principles study on electronic structures and magnetic properties of AlN nanosheets and nanoribbons. J Appl Phys 111:043702

    Article  ADS  Google Scholar 

  54. Hansson A, Mota FB, Rivelino R (2012) Metallic behavior in low-dimensional honeycomb SiB crystals: a first-principles prediction of atomic structure and electronic properties. Phys Rev B 86:195416

    Article  ADS  Google Scholar 

  55. Kınacı A, Haskins JB, Sevik C, Cagın T (2012) Thermal conductivity of BN–C nanostructures. Phys Rev B 86:115410

    Article  ADS  Google Scholar 

  56. Erhart P, Albe K (2005) Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide. Phys Rev B 71:035211

    Article  ADS  Google Scholar 

  57. Blasé X, Rubio A, Louie SG, Cohen ML (1994) Stability and band gap constancy of boron nitride nanotubes. Europhys Lett 28:335

    Article  ADS  Google Scholar 

  58. Baumeier B, Krüger P, Pollmann J (2007) Structural, elastic, and electronic properties of SiC, BN, and BeO nanotubes. Phys Rev B 76:085407

    Article  ADS  Google Scholar 

  59. Alam KM, Ray AK (2008) Hybrid density functional study of armchair SiC nanotubes. Phys Rev B 77:035436

    Article  ADS  Google Scholar 

  60. Zhang ZH, Guo WL, Dai YT (2009) Stability and electronic properties of small boron nitride nanotubes. J Appl Phys 105(8):084312

    Article  ADS  Google Scholar 

  61. Bogar F, Mintmire JW, Bartha F, Mező T, Van Alsenoy C (2005) Density-functional study of the mechanical and electronic properties of narrow carbon nanotubes under axial stress. Phys Rev B 72:085452

    Article  ADS  Google Scholar 

  62. Ogata S, Shibutani Y (2003) Ideal tensile strength and band gap of single-walled carbon nanotubes. Phys Rev B 68:165409

    Article  ADS  Google Scholar 

  63. Hernández E, Goze C, Bernier P, Rubio A (1998) Elastic properties of C and BxCyNz composite nanotubes. Phys Rev Lett 80:4502

    Article  ADS  Google Scholar 

  64. Ganji MD, Fereidoon A, Jahanshahi M, Ahangari MG (2012) Elastic properties of SWCNTs with curved morphology: density functional tight binding based treatment. Solid State Commun 152:1526–1530

    Article  ADS  Google Scholar 

  65. Fereidoon A, Ahangari MG, Ganji MD, Jahanshahi M (2012) Density functional theory investigation of the mechanical properties of single-walled carbon nanotubes. Comput Mater Sci 53:377–381

    Article  Google Scholar 

  66. Liu F, Ming P, Li J (2007) Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys Rev B 76:064120

    Article  ADS  Google Scholar 

  67. Wei X, Fragneaud B, Marianetti CA, Kysar JW (2009) Nonlinear elastic behavior of graphene: ab initio calculations to continuum description. Phys Rev B 80:205407

    Article  ADS  Google Scholar 

  68. Xu M, Paci JT, Oswald J, Belytschko T (2012) A constitutive equation for graphene based on density functional theory. Int J Solids Struct 49:2582–2589

    Article  Google Scholar 

  69. Andrew RC, Mapasha RE, Ukpong AM, Chetty N (2012) Mechanical properties of graphene and boronitrene. Phys Rev B 85:125428

    Article  ADS  Google Scholar 

  70. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  ADS  Google Scholar 

  71. Peng Q, Ji W, De S (2012) Mechanical properties of the hexagonal boron nitride monolayer: ab initio study. Comput Mater Sci 56:11

    Article  Google Scholar 

  72. Le MQ (2014) Atomistic study on the tensile properties of hexagonal AlN, BN, GaN, InN and SiC sheets. J Comput Theor Nanosci 11:1458

    Article  Google Scholar 

  73. Bosak A, Serrano J, Krisch M, Watanabe K, Taniguchi T, Kanda H (2006) Elasticity of hexagonal boron nitride: inelastic x-ray scattering measurements. Phys Rev B 73:041402R

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under the grant number: 107.02-2011.10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minh-Quy Le.

Appendices

Appendix 1

See Table 6

Table 6 The material’s parameters used in the computations

Appendix 2: Estimation of the force constant from Tersoff and Tersoff-like potentials

The energy E of a bond with the bond angle kept constant is developed in a Taylor series for small bond extension Δr = r − r 0:

$$ E\left( r \right) = E\left( {r_{0} } \right) + \frac{{\partial E\left( {r_{0} } \right)}}{\partial r}\Delta r + \frac{1}{2}\frac{{\partial^{2} E\left( {r_{0} } \right)}}{{\partial r^{2} }}\left( {\Delta r} \right)^{2} $$
(19)

E(r 0) = 0, since the system is in equilibrium in unstrained state at r = r 0.

\( \frac{{\partial E\left( {r_{0} } \right)}}{\partial r} = 0 \), since E(r) have a minimum at r = r 0.

Using the notation Δr = δl ij , and regarding Eq. (2) and (19) yield

$$ K = \frac{{\partial^{2} E\left( {r_{0} } \right)}}{{\partial r^{2} }} . $$
(20)

Hence K can be evaluated when E(r) is known from Tersoff or Tersoff-like potentials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, MQ. Young’s modulus prediction of hexagonal nanosheets and nanotubes based on dimensional analysis and atomistic simulations. Meccanica 49, 1709–1719 (2014). https://doi.org/10.1007/s11012-014-9976-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-9976-z

Keywords

Navigation