Skip to main content
Log in

Weak and strong discrete-time approximation of fractional SDEs

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

We study discrete-time approximations of Gaussian processes of the form Z H = ∫ .0 σ s dB H s and of SDEs driven by Z H, where σ is a deterministic (possibly, discontinuous) function, and B H is a fractional Brownian motion with Hurst index H >1/2. The classical approximation methods used previously in the case σ ≡ 1 are refined. Our schemes are based on an integral representation of B H given by Decreusefond and Ustunel. Applications to approximation of option prices in fractional models are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Bender, T. Sottinen, and E. Valkeila, Fractional processes as model in stochastic finance, in Advanced Mathematical Methods in Finance, Springer, Berlin, Heidelberg, 1986, pp. 75–103.

    Google Scholar 

  2. P.J. Bertoin, Les processus de Dirichlet et tant qu’espace de Banach, Stochastics, 18:155–168, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Billingsley, Convergence of Probability Measures, Chapman & Hall, New York, 1968.

    MATH  Google Scholar 

  4. M. Bladt and T.H. Rydberg, An actuarial approach to option pricing under the physical measure and without market assumptions, Insur. Math. Econ., 22:65–73, 1968.

    Article  MathSciNet  Google Scholar 

  5. F. Coquet, J. Memin, and L. Słomiński, On non-continuous Dirichlet processes, J. Theor. Probab., 16:197–216, 2003.

    Article  MATH  Google Scholar 

  6. F. Coquet and L. Słomiński, On the convergence of Dirichlet processes, Bernoulli, 5:615–639, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  7. L. Decreusefond and A. Ustunel, Stochastic analysis of the fractional Brownian motion, Potential Anal., 10:177–214, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  8. R.M. Dudley and R. Norvaiša, Concrete Functional Calculus, Springer, New York, Dordrecht, Heidelberg, London, 2011.

    Book  MATH  Google Scholar 

  9. A. Falkowski, Actuarial approach to option pricing in fractional Black–Scholes model with time-dependent volatility, Bull. Pol. Acad. Sci., Math., 61:181–193, 2013.

    Article  MATH  MathSciNet  Google Scholar 

  10. H. Föllmer, Calcul d’Itô sans probabilités, in J. Azéma and M. Yor (Eds.), Séminaire de Probabilités XV, Lect. Notes Math., Vol. 850, Springer, Berlin, Heidelberg, New York, 1981, pp. 143–150.

    Chapter  Google Scholar 

  11. H. Gu, J.-R. Liang, and Y.-X. Zhang, On a time-changed geometric Brownian motion and its application in financial market, Acta Phys. Pol. B, 43:1667–1681, 2012.

    Article  MathSciNet  Google Scholar 

  12. I. Gyöngy and N. Krylov, Existence of strong solutions for Itô stochastic equations via approximations, Probab. Theory Relat. Fields, 105:143–158, 1996.

    Article  MATH  Google Scholar 

  13. J. Jacod and A. Shiryaev, Limit Theorems for Stochastic Processes, Springer, Berlin, 1987.

    Book  MATH  Google Scholar 

  14. N.C. Jain and D. Monrad, Gaussian measures in B p , Ann. Probab., 11:46–57, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  15. K. Kubilius, The existence and uniqueness of the solution of an integral equation driven by a p-semimartingale of special type, Stoch. Proc. Appl., 98:289–315, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  16. K. Kubilius, On weak and strong solutions of an integral equation driven by a continuous p-semimartingale, Lithuanian Math. J., 43:34–50, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  17. K. Kubilius, On weak solutions of an integral equation driven by a p-semimartingale of special type, Acta Appl. Math., 78:223–242, 2003.

    Article  MathSciNet  Google Scholar 

  18. J.-R. Liang, J. Wang, L.-J. Lu, W.-Y. Qiu H. Gu, and F.-Y. Ren, Fractional Fokker–Planck equation and Black–Scholes formula in composite-diffusive regime, J. Stat. Phys., 146:205–216, 2012.

    Article  MATH  MathSciNet  Google Scholar 

  19. T.J. Lyons, Differential equations driven by rough signals (I): An extension of an inequality of L.C. Young, Math. Res. Lett., 1:451–464, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  20. J. Mémin, Y. Mishura, and E. Valkeila, Inequalities for the moments of Wiener integrals with respect to fractional Brownian motions, Stat. Probab. Lett., 44:197–206, 2001.

    Article  Google Scholar 

  21. Y. Mishura, Stochastic Calculus for Fractional Brownian Motion and Related Processes, Springer, Berlin, 2008.

    Book  MATH  Google Scholar 

  22. A. Neuenkirch and I. Nourdin, Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion, J. Theor. Probab., 20:871–899, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  23. A. Nieminen, Fractional Brownian motion and martingale-differences, Stat. Probab. Lett., 70:1–10, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  24. D. Nualart and A. Răşcanu, Differential equations driven by fractional Brownian motion, Collect. Math., 53:55–81, 2002.

    MATH  MathSciNet  Google Scholar 

  25. P. Parczewski, A fractional Donsker theorem, Stoch. Anal. Appl., 32(2):328–347, 2014.

    Article  MATH  MathSciNet  Google Scholar 

  26. D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer, Berlin, Heidelberg, New York, 2005.

    MATH  Google Scholar 

  27. A. A. Ruzmaikina, Stieltjes integrals of Holder continuous functions with applications to fractional Brownian motion, J. Stat. Phys., 100:1049–1069, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  28. L. Słomiński and B. Ziemkiewicz, Inequalities for the \( \mathbb{L} \) p norms of integrals with respect to a fractional Brownian motion, Stat. Probab. Lett., 73:79-90, 2005.

    Article  MATH  Google Scholar 

  29. L. Słomiński and B. Ziemkiewicz, On weak approximations of integrals with respect to fractional Brownian motion, Stat. Probab. Lett., 79:543–552, 2009.

    Article  MATH  Google Scholar 

  30. T. Sottinen, Fractional Brownian motion, random walks and binary market models, Finance Stoch., 5:343–355, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  31. T. Sottinen and E. Valkeila, On arbitrage and replication in the fractional Black-Scholes pricing model, Stat. Decis., 21:137-151, 2003.

    MathSciNet  Google Scholar 

  32. H. Xue and Q.Y. Li, An actuarial approach to the minimum or maximum option pricing in fractional Brownian motion environment, in Proceedings of the 2nd International Conference on Information and Financial Engineering, Chongqing, China, September 17–19, 2010, IEEE, 2010, pp. 216-219.

  33. B. Ziemkiewicz, On approximation of average expectation prices for path dependent options in fractional models, in Proceedings of the 4th International Conference on Computational Science Krakow, Poland, June 6–9, 2004, Part IV, Lect. Notes Comput. Sci., Vol. 3039, Springer, Berlin, Heidelberg, 2004, pp. 819–826.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leszek Słomiński.

Additional information

*Research supported by Polish National Science Centre (grant No. 2012/07/B/ST1/03508).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falkowski, A., Słomiński, L. & Ziemkiewicz, B. Weak and strong discrete-time approximation of fractional SDEs . Lith Math J 54, 409–428 (2014). https://doi.org/10.1007/s10986-014-9253-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-014-9253-9

Keywords

Navigation