Skip to main content
Log in

Exploring dispersal barriers using landscape genetic resistance modelling in scarlet macaws of the Peruvian Amazon

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Dispersal is essential for species persistence and landscape genetic studies are valuable tools for identifying potential barriers to dispersal. Macaws have been studied for decades in their natural habitat, but we still have no knowledge of how natural landscape features influence their dispersal.

Objectives

We tested for correlations between landscape resistance models and the current population genetic structure of macaws in continuous rainforest to explore natural barriers to their dispersal.

Methods

We studied scarlet macaws (Ara macao) over a 13,000 km2 area of continuous primary Amazon rainforest in south-eastern Peru. Using remote sensing imagery from the Carnegie Airborne Observatory, we constructed landscape resistance surfaces in CIRCUITSCAPE based on elevation, canopy height and above-ground carbon distribution. We then used individual- and population-level genetic analyses to examine which landscape features influenced gene flow (genetic distance between individuals and populations).

Results

Across the lowland rainforest we found limited population genetic differentiation. However, a population from an intermountain valley of the Andes (Candamo) showed detectable genetic differentiation from two other populations (Tambopata) located 20–60 km away (F ST = 0.008, P = 0.001–0.003). Landscape resistance models revealed that genetic distance between individuals was significantly positively related to elevation.

Conclusions

Our landscape resistance analysis suggests that mountain ridges between Candamo and Tambopata may limit gene flow in scarlet macaws. These results serve as baseline data for continued landscape studies of parrots, and will be useful for understanding the impacts of anthropogenic dispersal barriers in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andrew RL, Bernatchez L, Bonin A, Buerkle CA, Carstens BC, Emerson BC, Garant D, Giraud T, Kane NC, Rogers SM, Slate J, Smith H, Sork VL, Stone GN, Vines TH, Waits L, Widmer A, Rieseberg LH (2013) A road map for molecular ecology. Mol Ecol 22(10):2605–2626

    Article  PubMed  Google Scholar 

  • Andrew RL, Ostevik KL, Ebert DP, Rieseberg LH (2012) Adaptation with gene flow across the landscape in a dune sunflower. Mol Ecol 21(9):2078–2091

    Article  PubMed  Google Scholar 

  • Asner GP, Knapp DE, Boardman J, Green RO, Kennedy-Bowdoin Ty, Eastwood M, Martin RE, Anderson C, Field CB (2012) Carnegie Airborne Observatory-2: increasing science data dimensionality via high-fidelity multi-sensor fusion. Remote Sens Environ 124:454–465

    Article  Google Scholar 

  • Asner GP, Knapp DE, Martin RE, Tupayachi R, Anderson CB, Mascaro J, Sinca F, Chadwick KD, Higgins M, Farfan W, Llactayo W, Silman MR (2014) Targeted carbon conservation at national scales with high-resolution monitoring. Proc Natl Acad Sci 111(47):E5016–E5022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asner GP, Llactayo W, Tupayachi R, Luna ER (2013) Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring. Proc Natl Acad Sci 110(46):18454–18459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baraloto C, Alverga P, Quispe SB, Barnes G, Bejar Chura N, da Silva IB, Castro W, da Souza H, de Souza Moll IE, Del Alcazar Chilo J, Duenas Linares H, Quispe JG, Kenji D, Marsik M, Medeiros H, Murphy S, Rockwell C, Selaya G, Shenkin A, Silveira M, Southworth J, Vasquez Colomo GH, Perz S (2015) Effects of road infrastructure on forest value across a tri-national Amazonian frontier. Biol Conserv 191:674–681

    Article  Google Scholar 

  • Beheregaray LB, Caccone A (2007) Cryptic biodiversity in a changing world. J Biol 6(4):1–5

    Article  Google Scholar 

  • BirdLife International and NatureServe (2014) Bird species distribution maps of the world. Version 4.0. BirdLife International, Cambridge, UK and NatureServe, Arlington, USA.

  • Böhning-Gaese K, Caprano T, Van Ewijk K, Veith M (2006) Range size: disentangling current traits and phylogenetic and biogeographic factors. Am Nat 167(4):555–567

    Article  PubMed  Google Scholar 

  • Brightsmith DJ (2004) Effects of weather on parrot geophagy in Tambopata, Peru. Wilson Bull 116:134–145

    Article  Google Scholar 

  • Brightsmith DJ (2005) Parrot nesting in Southeastern Peru: seasonal patterns and keystone trees. Wilson Bull 117:296–305

    Article  Google Scholar 

  • Brightsmith DJ, Hilburn J, del Campo A, Boyd J, Frisius M, Frisius R, Janik D, Guillen F (2005) The use of hand-raised psittacines for reintroduction: a case study of scarlet macaws (Ara macao) in Peru and Costa Rica. Biol Conserv 121:465–472

    Article  Google Scholar 

  • Britt CR, Anleu RG, Desmond MJ (2014) Nest survival of a long-lived psittacid: scarlet Macaws (Ara macao cyanoptera) in the Maya Biosphere Reserve of Guatemala and Chiquibul Forest of Belize. Condor 116(2):265–276

    Article  Google Scholar 

  • Clobert J, Baguette M, Benton TG, Bullock JM, Ducatez S (2012) Dispersal ecology and evolution. Oxford University Press, Oxford

    Book  Google Scholar 

  • Collar N, Boesman P, Sharpe CJ (2016) Scarlet Macaw (Ara macao). In: del Hoyo J, Elliott A, Sargatal J, Christie DA, de Juana E (eds) Handbook of the birds of the world alive. Lynx Edicions, Barcelona. http://www.hbw.com/node/54620. Accessed 4 Oct 2016

  • Conover T (2003) Perú’s long haul: highway to riches, or ruin? Natl Geogr 203:80–100

    Google Scholar 

  • Cushman Samuel A, McKelvey Kevin S, Hayden J, Schwartz Michael K (2006) Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am Nat 168(4):486–499

    Article  CAS  PubMed  Google Scholar 

  • Dobson S (1982) Competition for mates and predominant juvenile male dispersal in mammals. Anim Behav 30(4):1183–1192

    Article  Google Scholar 

  • Earl D, vonHoldt B (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131(2):479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164(4):1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faria PJ, Guedes NMR, Yamashita C, Martuscelli P, Miyaki CY (2008) Genetic variation and population structure of the endangered Hyacinth Macaw (Anodorhynchus hyacinthinus): implications for conservation. Biodivers Conserv 17:765–779

    Article  Google Scholar 

  • Finer M, Jenkins CN, Pimm SL, Keane B, Ross C (2008) Oil and gas projects in the Western Amazon: threats to wilderness, biodiversity, and indigenous peoples. PLoS ONE 3(8):e2932

    Article  PubMed  PubMed Central  Google Scholar 

  • Forshaw JM (2011) Parrots of the world. CSIRO Publishing, Collingwood

    Google Scholar 

  • Girardin CAJ, Malhi Y, AragÃO LEOC, Mamani M, Huaraca Huasco W, Durand L, Feeley KJ, Rapp J, Silva-Espejo JE, Silman M, Salinas N, Whittaker RJ (2010) Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Glob Change Biol 16(12):3176–3192

    Article  Google Scholar 

  • Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22(7):1–19

    Article  Google Scholar 

  • Graves TA, Beier P, Royle JA (2013) Current approaches using genetic distances produce poor estimates of landscape resistance to interindividual dispersal. Mol Ecol 22(15):3888–3903

    Article  PubMed  Google Scholar 

  • Guillot G, Estoup A, Mortier F, Cosson JF (2005) A spatial statistical model for landscape genetics. Genetics 170(3):1261–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillot G, Renaud S, Ledevin R, Michaux J, Claude J (2012) A unifying model for the analysis of phenotypic, genetic, and geographic data. Syst Biol 61(6):897–911

    Article  PubMed  Google Scholar 

  • Guillot G, Rousset F (2013) Dismantling the Mantel tests. Methods Ecol Evol 4(4):336–344

    Article  Google Scholar 

  • Hanski I, Erälahti C, Kankare M, Ovaskainen O, Sirén H (2004) Variation in migration propensity among individuals maintained by landscape structure. Ecol Lett 7(10):958–966

    Article  Google Scholar 

  • IUCN (2014) The IUCN red list of threatened species. Version 2014.2. http://www.iucnredlist.org/

  • Keenan RJ, Reams GA, Achard F, de Freitas JV, Grainger A, Lindquist E (2015) Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. For Ecol Manag 352:9–20

    Article  Google Scholar 

  • Keller D, Holderegger R, van Strien M, Bolliger J (2015) How to make landscape genetics beneficial for conservation management? Conserv Genet 16(3):503–512

    Article  Google Scholar 

  • Kokko H, López-Sepulcre A (2006) From individual dispersal to species ranges: perspectives for a changing world. Science 313(5788):789–791

    Article  CAS  PubMed  Google Scholar 

  • Lee ATK, Marsden SJ (2012) The influence of habitat, season, and detectability on abundance estimates across an Amazonian Parrot assemblage. Biotropica 44:537–544

    Article  Google Scholar 

  • Legendre P, Fortin M-J (2010) Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Mol Ecol Resour 10(5):831–844

    Article  PubMed  Google Scholar 

  • Legendre P, Lapointe F-J, Casgrain P (1994) Modeling brain evolution from behavior: a permutational regression approach. Evolution 48(5):1487–1499

    Article  Google Scholar 

  • Manel S, Holderegger R (2013) Ten years of landscape genetics. Trends Ecol Evol 28(10):614–621

    Article  PubMed  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18(4):189–197

    Article  Google Scholar 

  • McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S (2012) Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Micro 10(1):39–50

    CAS  Google Scholar 

  • McRae BH, Beier P (2007) Circuit theory predicts gene flow in plant and animal populations. Proc Natl Acad Sci 104(50):19885–19890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McRae BH, Shah VB, Mohapatra TK (2013) Circuitscape 4 user guide. The Nature Conservancy. http://www.circuitscape.org/

  • Monge O, Schmidt K, Vaughan C, Gutiérrez-Espeleta G (2016) Genetic patterns and conservation of the Scarlet Macaw (Ara macao) in Costa Rica. Conserv Genet 17:745–750

    Article  Google Scholar 

  • Munn CA (1992) Macaw biology and ecotourism, or “When a bird in the bush is worth two in the hand”. In: Beissinger SR, Snyder NFR, Munn CA (eds) New world parrots in crisis: solutions from conservation biology. Smithsonian Institution Press, Washington, DC, pp 47–72

    Google Scholar 

  • Olah G, Heinsohn RG, Brightsmith DJ, Espinoza JR, Peakall R (2016) Validation of non-invasive genetic tagging in two large macaw species (Ara macao and A. chloropterus) of the Peruvian Amazon. Conserv Genet. doi:10.1007/s12686-016-0573-4

    Google Scholar 

  • Olah G, Heinsohn RG, Espinoza JR, Brightsmith DJ, Peakall R (2015) An evaluation of primers for microsatellite markers in Scarlet Macaw (Ara macao) and their performance in a Peruvian wild population. Conserv Genet Resour 7(1):157–159

    Article  Google Scholar 

  • Olah G, Vigo G, Heinsohn R, Brightsmith DJ (2014) Nest site selection and efficacy of artificial nests for breeding success of Scarlet Macaws Ara macao macao in lowland Peru. J Nat Conserv 22(2):176–185

    Article  Google Scholar 

  • Olah G, Vigo G, Ortiz L, Rozsa L, Brightsmith DJ (2013) Philornis sp bot fly larvae in free living scarlet macaw nestlings and a new technique for their extraction. Vet Parasitol 196(1–2):245–249

    Article  PubMed  Google Scholar 

  • Orsini L, Vanoverbeke J, Swillen I, Mergeay J, De Meester L (2013) Drivers of population genetic differentiation in the wild: isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Mol Ecol 22(24):5983–5999

    Article  PubMed  Google Scholar 

  • Peakall R, Ruibal M, Lindenmayer DB (2003) Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, Rattua Fuscipes. Evolution 57(5):1182–1195

    Article  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28(19):2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peakall R, Smouse PE, Huff DR (1995) Evolutionary implications of allozyme and RAPD variation in diploid populations of dioecious buffalograss Buchloë dactyloides. Mol Ecol 4(2):135–148

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Renton K, Brightsmith DJ (2009) Cavity use and reproductive success of nesting macaws in lowland forest of southeast Peru. J Field Ornithol 80:1–8

    Article  Google Scholar 

  • Schmidt KL (2013) Spatial and temporal patterns of genetic variation in scarlet macaws (Ara macao): implications for population management in La Selva Maya. Columbia University, Central America

    Google Scholar 

  • Schofield G, Dimadi A, Fossette S, Katselidis KA, Koutsoubas D, Lilley MKS, Luckman A, Pantis JD, Karagouni AD, Hays GC (2013) Satellite tracking large numbers of individuals to infer population level dispersal and core areas for the protection of an endangered species. Divers Distrib 19(7):834–844

    Article  Google Scholar 

  • Segelbacher G, Cushman SA, Epperson BK, Fortin M-J, Francois O, Hardy OJ, Holderegger R, Taberlet P, Waits LP, Manel S (2010) Applications of landscape genetics in conservation biology: concepts and challenges. Conserv Genet 11(2):375–385

    Article  Google Scholar 

  • Shaw AK, Jalasvuori M, Kokko H (2014) Population-level consequences of risky dispersal. Oikos 123(8):1003–1013

    Article  Google Scholar 

  • Smith AL, Bull CM, Gardner MG, Driscoll DA (2014) Life history influences how fire affects genetic diversity in two lizard species. Mol Ecol 23(10):2428–2441

    Article  PubMed  Google Scholar 

  • Smith AL, Landguth EL, Bull CM, Banks SC, Gardner MG, Driscoll DA (2016) Dispersal responses override density effects on genetic diversity during post-disturbance succession. Proc R Soc Lond B 283:20152934

    Article  Google Scholar 

  • Smouse PE, Peakall R (1999) Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82(5):561–573

    Article  PubMed  Google Scholar 

  • Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, Dezzani R, Delmelle E, Vierling L, Waits LP (2007) Putting the ‘landscape’ in landscape genetics. Heredity 98(3):128–142

    Article  CAS  PubMed  Google Scholar 

  • Szövényi P, Sundberg S, Shaw AJ (2012) Long-distance dispersal and genetic structure of natural populations: an assessment of the inverse isolation hypothesis in peat mosses. Mol Ecol 21(22):5461–5472

    Article  PubMed  Google Scholar 

  • Tickell O (1993) Highway threatens Tambopata. Geographical 65:7–9

    Google Scholar 

  • Vigo G, Williams M, Brightsmith DJ (2011) Growth of scarlet macaw (Ara macao) chicks in southeastern Peru. Ornitol Neotropical 22:143–153

    Google Scholar 

  • Wang Y-H, Yang K-C, Bridgman C, Lin L-K (2008) Habitat suitability modelling to correlate gene flow with landscape connectivity. Landsc Ecol 23(8):989–1000

    Google Scholar 

  • Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19(3):395–420

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Loro Parque Foundation, Rufford Small Grant Foundation, Idea Wild, and The Australian National University. Thanks for technical laboratory support to Christine Hayes and Cintia Garai. We thank for the laboratory space provided by the Unidad de Biotecnología Molecular, Laboratorio de Investigación y Desarrollo, Universidad Peruana Cayetano Heredia in Lima, Peru. We thank to Janice Boyd, Texas A&M University to provide us preliminary results from the satellite telemetry analysis on scarlet macaws in Tambopata. Samples were collected under research permits from the Servicio Nacional de Areas Naturales Protegidas (SERNANP) in Peru. CITES permits were provided by the Peruvian and Australian authorities. Genetic access to the samples was granted by the Servicio Nacional Forestal y de Fauna Silvestre (SERFOR) in Peru. The Animal Experimentation Ethics Committee of the Texas A&M University approved all methods. The Carnegie Airborne Observatory portion of this study was supported by a grant to G.P.A. from the John D. and Catherine T. MacArthur Foundation. Two anonymous referees provided helpful comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Olah.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 237 kb)

Supplementary material 2 (MP4 288299 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olah, G., Smith, A.L., Asner, G.P. et al. Exploring dispersal barriers using landscape genetic resistance modelling in scarlet macaws of the Peruvian Amazon. Landscape Ecol 32, 445–456 (2017). https://doi.org/10.1007/s10980-016-0457-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-016-0457-8

Keywords

Navigation