Skip to main content

Advertisement

Log in

How to make landscape genetics beneficial for conservation management?

  • Review Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Many landscape genetic studies promise results that can be applied in conservation management. However, only few landscape genetic studies have been used by practitioners. Here, we identified scientific topics in landscape genetics that need to be addressed before results can more successfully be applied in conservation management. For each topic, weaknesses of common practice in landscape genetic analysis are described by presenting examples from current studies and further recommendations for improvements are outlined. First, we suggest matching the extent of the study area with those of conservation management units and the study species’ dispersal potential when designing landscape genetic studies. Second, the quality of the underlying statistical models should be optimised, and models should include variables that are useful for management implementation. Third, to further improve the applicability of landscape genetic studies, thresholds for landscape effects on gene flow should be identified. Fourth, landscape genetic models could be used for the development of conservation planning tools, which ideally also incorporate the above described thresholds. Fifth and as discussed in earlier studies, the use of multiple species and replication at the landscape scale is recommended. Although it appears that only few landscape genetic studies have been applied in practical management until now, examples presented in this article show that landscape genetic methods can provide important information to formulate concrete management implications. Thus, addressing the above-mentioned scientific topics in landscape genetic studies would enhance the benefits of their results for practitioners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E (2003) The application of “least-cost” modelling as a functional landscape model. Landsc Urban Plan 64:233–247

    Article  Google Scholar 

  • Albert EM, Fortuna MA, Godoy JA, Bascompte J (2013) Assessing the robustness of networks of spatial genetic variation. Ecol Lett 16:86–93

    Article  PubMed  Google Scholar 

  • Anderson CD, Epperson BK, Fortin MJ, Holderegger R, James PMA, Rosenberg MS, Scribner KT, Spear S (2010) Considering spatial and temporal scale in landscape-genetic studies of gene flow. Mol Ecol 19:3565–3575

    Article  PubMed  Google Scholar 

  • Angelone S, Kienast F, Holderegger R (2011) Where movement happens: scale-dependent landscape effects on genetic differentiation in European tree frog. Ecography 34:714–722

    Article  Google Scholar 

  • Apodaca JJ, Rissler LJ, Godwin JC (2012) Population structure and gene flow in a heavily disturbed habitat: implications for the management of the imperilled Red Hills salamander (Phaeognathus hubrichti). Conserv Genet 13:913–923

    Article  Google Scholar 

  • Arens P, van der Sluis T, van’t Westende WPC, Vosman B, Vos CC, Smulders MJM (2007) Genetic population differentiation and connectivity among fragmented Moor frog (Rana arvalis) populations in The Netherlands. Landsc Ecol 22:1489–1500

    Article  Google Scholar 

  • Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model 157:101–118

    Article  Google Scholar 

  • Balkenhol N, Pardini R, Cornelius C, Fernandes F, Sommer S (2013) Landscape-level comparison of genetic diversity and differentiation in a small mammal inhabiting different fragmented landscapes of the Brazilian Atlantic forest. Conserv Genet 14:355–367

    Article  Google Scholar 

  • Bolliger J, Lander T, Balkenhol N (2014) Landscape genetics since 2003: status, challenges and future directions. Landsc Ecol 29:361–366

    Article  Google Scholar 

  • Braunisch V, Home R, Pellet J, Arlettaz R (2012) Conservation science relevant to action: a research agenda identified and prioritized by practitioners. Biol Conserv 153:201–210

    Article  Google Scholar 

  • Broquet T, Ray N, Petit E, Fryxell JM, Burel F (2006) Genetic isolation by distance and landscape connectivity in the American marten (Martes americana). Landsc Ecol 21:877–889

    Article  Google Scholar 

  • Corlatti L, Hackländer K, Frey-Roos F (2009) Ability of wildlife overpasses to provide connectivity and prevent genetic isolation. Conserv Biol 23:548–556

    Article  PubMed  Google Scholar 

  • Cushman SA, Landguth EL (2010) Scale dependent inference in landscape genetics. Landsc Ecol 25:967–979

    Article  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    Article  CAS  PubMed  Google Scholar 

  • Delaney KS, Riley SPD, Fisher RN (2010) A rapid, strong, and convergent genetic response to urban habitat fragmentation in four divergent and widespread vertebrates. PLoS ONE 5:11

    Google Scholar 

  • Emaresi G, Pellet J, Dubey S, Hirzel AH, Fumagalli L (2011) Landscape genetics of the Alpine newt (Mesotriton alpestris) inferred from a strip-based approach. Conserv Genet 12:41–50

    Article  Google Scholar 

  • Emel SL, Storfer A (2012) A decade of amphibian population genetic studies: synthesis and recommendations. Conserv Genet 13:1685–1689

    Article  Google Scholar 

  • Epps CW, Palsboll PJ, Wehausen JD, Roderick GK, Ramey RR, McCullough DR (2005) Highways block gene flow and cause a rapid decline in genetic diversity of desert bighorn sheep. Ecol Lett 8:1029–1038

    Article  Google Scholar 

  • Epps CW, Wehausen JD, Bleich VC, Torres SG, Brashares JS (2007) Optimizing dispersal and corridor models using landscape genetics. J Appl Ecol 44:714–724

    Article  Google Scholar 

  • Frantz AC, Bertouille S, Eloy MC, Licoppe A, Chaumont F, Flamand MC (2012) Comparative landscape genetic analyses show a Belgian motorway to be a gene flow barrier for red deer (Cervus elaphus), but not wild boars (Sus scrofa). Mol Ecol 21:3445–3457

    Article  CAS  PubMed  Google Scholar 

  • Funk WC, McKay JK, Hohenlohe PA, Allendorf FW (2012) Harnessing genomics for delineating conservation units. Trends Ecol Evol 27:489–496

    Article  PubMed Central  PubMed  Google Scholar 

  • Goldberg CS, Waits LP (2010) Comparative landscape genetics of two pond-breeding amphibian species in a highly modified agricultural landscape. Mol Ecol 19:3650–3663

    Article  PubMed  Google Scholar 

  • Hoban SM, Hauffe HC, Pérez-Espona S, Arntzen JW, Bertorelle G, Bryja J, Frith K, Gaggiotti OE, Galbusera P, Godoy JA, Hoelzel AR, Nichols RA, Primmer CR, Russo I-R, Segelbacher G, Siegismund HR, Sihvonen M, Vernesi C, Vilà C, Bruford MW (2013) Bringing genetic diversity to the forefront of conservation policy and management. Conserv Genet Res 5:593–598

    Article  Google Scholar 

  • Holderegger R, Di Giulio M (2010) The genetic effects of roads: a review of empirical evidence. Basic Appl Ecol 11:522–531

    Article  Google Scholar 

  • Holderegger R, Wagner HH (2008) Landscape genetics. Bioscience 58:199–207

    Article  Google Scholar 

  • Holzhauer SIJ, Ekschmitt K, Sander AC, Dauber J, Wolters V (2006) Effect of historic landscape change on the genetic structure of the bush-cricket Metrioptera roeseli. Landsc Ecol 21:891–899

    Article  Google Scholar 

  • Howes BJ, Pither R, Prior KA (2009) Conservation implications should guide the application of conservation genetics research. Endanger Species Res 8:193–199

    Article  Google Scholar 

  • Keller D, Brodbeck S, Floss I, Vonwil G, Holderegger R (2010) Ecological and genetic measurements of dispersal in a threatened dragonfly. Biol Conserv 143:2658–2663

    Article  Google Scholar 

  • Keller D, Van Strien MJ, Holderegger R (2012) Do landscape barriers affect functional connectivity of populations of an endangered damselfly? Freshw Biol 57:1373–1384

    Article  Google Scholar 

  • Keller D, Holderegger R, Van Strien MJ (2013a) Spatial scale affects landscape genetic analysis of a wetland grasshopper. Mol Ecol 22:2467–2482

    Article  PubMed  Google Scholar 

  • Keller D, Van Strien MJ, Herrmann M, Bolliger J, Edwards PJ, Ghazoul J, Holderegger R (2013b) Is functional connectivity in common grasshopper species affected by fragmentation in an agricultural landscape? Agric Ecosyst Environ 175:39–46

    Article  Google Scholar 

  • Koskela J, Lefèvre F, Schueler S, Kraigher H, Olrik DC, Hubert J, Longauer R, Bozzano M, Yrjänä L, Alizoti P, Rotach P, Vietto L, Bordács S, Myking T, Eysteinsson T, Souvannavong O, Fady B, De Cuyper B, Heinze B, von Wühlisch G, Ducousso A, Ditlevsen B (2013) Translating conservation genetics into management: Pan-European minimum requirements for dynamic conservation units of forest tree genetic diversity. Biol Conserv 157:39–49

    Article  Google Scholar 

  • Laikre L, Allendorf WF, Aroner LC, Baker CS, Gregovich DP, Hansen MM, Jackson JA, Kendall KC, McKelvey K, Neel MC, Olivieri I, Ryman N, Schwartz MK, Bull RS, Stetz JB, Tallmon DA, Taylor BL, Vojta CD, Waller DM, Waples RS (2009) Neglect of genetic diversity in implementation of the convention on biological diversity. Conserv Biol 24:86–88

    Article  PubMed  Google Scholar 

  • Manel S, Holderegger R (2013) Ten years of landscape genetics. Trends Ecol Evol 28:614–621

    Article  PubMed  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Manier MK, Arnold SJ (2006) Ecological correlates of population genetic structure: a comparative approach using a vertebrate metacommunity. Proc R Soc B Biol Sci 273:3001–3009

    Article  Google Scholar 

  • McRae BH, Beier P (2007) Circuit theory predicts gene flow in plant and animal populations. Proc Natl Acad Sci USA 104:19885–19890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Méndez M, Vögeli M, Tella JL, Godoy JA (2014) Joint effects of population size and isolation on genetic erosion in fragmented populations: finding fragmentation thresholds for management. Evol Appl 7:506–518

    Article  PubMed Central  PubMed  Google Scholar 

  • Moller AP, Jennions MD (2002) How much variance can be explained by ecologists and evolutionary biologists? Oecologia 132:492–500

    Article  Google Scholar 

  • Montgomery DB, Morrison DG (1973) A note on adjusting R2. J Financ 28:1009–1013

  • Moore JA, Tallmon DA, Nielsen J, Pyare S (2011) Effects of the landscape on boreal toad gene flow: does the pattern-process relationship hold true across distinct landscapes at the northern range margin? Mol Ecol 20:4858–4869

    Article  PubMed  Google Scholar 

  • Moyle LC, Stinchcombe JR, Hudgens BR, Morris WF (2003) Conservation genetics in the recovery of endangered animal species: a review of US endangered species recovery plans (1977–1998). Anim Biodivers Conserv 26:85–95

    Google Scholar 

  • Munshi-South J (2012) Urban landscape genetics: canopy cover predicts gene flow between white-footed mouse (Peromyscus leucopus) populations in New York city. Mol Ecol 21:1360–1378

    Article  PubMed  Google Scholar 

  • Parks SA, McKelvey KS, Schwartz MK (2013) Effects of weighting schemes on the identification of wildlife corridors generated with least-cost methods. Conserv Biol 27:145–154

    Article  PubMed  Google Scholar 

  • Pavlacky DC, Goldizen AW, Prentis PJ, Nicholls JA, Lowe AJ (2009) A landscape genetics approach for quantifying the relative influence of historic and contemporary habitat heterogeneity on the genetic connectivity of a rainforest bird. Mol Ecol 18:2945–2960

    Article  PubMed  Google Scholar 

  • Poelchau MF, Hamrick JL (2012) Differential effects of landscape-level environmental features on genetic structure in three codistributed tree species in Central America. Mol Ecol 21:4970–4982

    Article  PubMed  Google Scholar 

  • Rasic G, Keyghobadi N (2012) From broadscale patterns to fine-scale processes: habitat structure influences genetic differentiation in the pitcher plant midge across multiple spatial scales. Mol Ecol 21:223–236

    Article  PubMed  Google Scholar 

  • Richardson JL (2012) Divergent landscape effects on population connectivity in two co-occurring amphibian species. Mol Ecol 21:4437–4451

    Article  PubMed  Google Scholar 

  • Sawaya MA, Kalinowski ST, Clevenger AP (2014) Genetic connectivity for two bear species at wildlife crossing structures in Banff National Park. Proc R Soc B Biol Sci 28:20131705

    Article  Google Scholar 

  • Segelbacher G, Cushman SA, Epperson BK, Fortin MJ, Francois O, Hardy OJ, Holderegger R, Taberlet P, Waits LP, Manel S (2010) Applications of landscape genetics in conservation biology: concepts and challenges. Conserv Genet 11:375–385

    Article  Google Scholar 

  • Shafer ABA, Northrup JM, White KS, Boyce MS, Côté SD, Coltman DW (2012) Habitat selection predicts genetic relatedness in an alpine ungulate. Ecology 93:1317–1329

    Article  PubMed  Google Scholar 

  • Short Bull RA, Cushman SA, Mace R, Chilton T, Kendall KC, Landguth EL, Schwartz MK, McKelvey K, Allendorf FW, Luikart G (2011) Why replication is important in landscape genetics: American black bear in the rocky mountains. Mol Ecol 20:1092–1107

    Article  Google Scholar 

  • Sommer S, McDevitt AD, Balkenhol N (2013) Landscape genetic approaches in conservation biology. Conserv Genet 14:249–251

    Article  Google Scholar 

  • Spear SF, Peterson CR, Matocq MD, Storfer A (2005) Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum). Mol Ecol 14:2553–2564

    Article  CAS  PubMed  Google Scholar 

  • Spear SF, Balkenhol N, Fortin MJ, McRae BH, Scribner K (2010) Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Mol Ecol 19:3576–3591

    Article  PubMed  Google Scholar 

  • Steele CA, Baumsteiger J, Storfer A (2009) Influence of life-history variation on the genetic structure of two sympatric salamander taxa. Mol Ecol 18:1629–1639

    Article  CAS  PubMed  Google Scholar 

  • Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, Dezzani R, Delmelle E, Vierling L, Waits LP (2007) Putting the “landscape” in landscape genetics. Heredity 98:128–142

    Article  CAS  PubMed  Google Scholar 

  • Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: where are we now? Mol Ecol 19:3496–3514

    Article  PubMed  Google Scholar 

  • Sutherland WJ, Adams WM, Aronson RB, Aveling R, Blackburn TM, Broad S, Ceballos G, Coté IM, Cowling RM, Da Fonseca GAB, Dinerstein E, Ferraro PJ, Fleishman E, Gascon C, Hunter M Jr, Hutton J, Kareiva P, Kuria A, Macdonald DW, Mackinnon K, Madgwick FJ, Mascia MB, McNeely J, Milner-Gulland EJ, Moon S, Morley CG, Nelson S, Osborn D, Pai M, Parsons ECM, Peck LS, Possingham H, Prior SV, Pullin AS, Rands MRW, Ranganathan J, Redford KH, Rodriguez JP, Seymour F, Sobel J, Sodhi NS, Stott A, Vance-Borland K, Watkinson AR (2009) One hundred questions of importance to the conservation of global biological diversity. Conserv Biol 23:557–567

    Article  CAS  PubMed  Google Scholar 

  • Trumbo DR, Spear SF, Baumsteiger J, Storfer A (2013) Rangewide landscape genetics of an endemic pacific northwestern salamander. Mol Ecol 22:1250–1266

    Article  PubMed  Google Scholar 

  • Turner MG (1989) Landscape ecology—the effect of pattern on process. Annu Rev Ecol Syst 20:171–197

    Article  Google Scholar 

  • Van Buskirk J (2012) Permeability of the landscape matrix between amphibian breeding sites. Ecol Evol 2:3160–3167

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Strien MJ, Keller D, Holderegger R (2012) A new analytical approach to landscape genetic modelling: least-cost transect analysis and linear mixed models. Mol Ecol 21:4010–4023

    Article  Google Scholar 

  • Van Strien MJ, Keller D, Holderegger R, Ghazoul J, Kienast F, Bolliger J (2013) Landscape genetics as a tool for conservation planning: predicting the effects of landscape change on gene flow. Ecol Appl 24:327–339

    Article  Google Scholar 

  • Walzer C, Kowalczyk C, Alexander JM, Baur B, Bogliani G, Brun J-J, Füreder L, Guth M-O, Haller R, Holderegger R, Kohler Y, Kueffer C, Righetti A, Spaar R, Sutherland WJ, Ullrich-Schneider A, Vanpeene-Bruhier SN, Scheurer T (2013) The 50 most important questions relating to the maintenance and restoration of an ecological continuum in the European Alps. PLoS ONE 8:e53139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wasserman T, Cushman S, Littell J, Shirk A, Landguth E (2013) Population connectivity and genetic diversity of American marten (Martes americana) in the United States northern rocky mountains in a climate change context. Conserv Genet 14:529–541

    Article  Google Scholar 

  • Weckworth BV, Musiani M, DeCesare NJ, McDevitt AD, Hebblewhite M, Mariani S (2013) Preferred habitat and effective population size drive landscape genetic patterns in an endangered species. Proc R Soc B Biol Sci 280:20131756

    Article  Google Scholar 

  • Winter M, Devictor V, Schweiger O (2013) Phylogenetic diversity and nature conservation: where are we? Trends Ecol Evol 28:199–204

    Article  PubMed  Google Scholar 

  • Yannic G, Pellisiier L, Le Corre M, Dussault C, Beeernatchez L, Côté SD (2014) Temporally dynamic habitat suitability predicts genetic relatedness among caribou. Proc R Soc B Biol Sci 281:20140502

    Article  Google Scholar 

Download references

Acknowledgments

We thank the GENEREACH Project funded by the Competence Center Environment and Sustainability of the ETH Domain for financial support and two anonymous referees for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Keller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keller, D., Holderegger, R., van Strien, M.J. et al. How to make landscape genetics beneficial for conservation management?. Conserv Genet 16, 503–512 (2015). https://doi.org/10.1007/s10592-014-0684-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-014-0684-y

Keywords

Navigation