Skip to main content
Log in

Injectable gel from squid pen chitosan for bone tissue engineering applications

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the potential of squid pen chitosan for developing injectable gels for bone tissue engineering applications. Gel mixtures made of glycerol phosphate mixed with crab (RC) or squid pen (RS) chitosan (2 % w/v) at four different concentrations (0, 30, 50 and 70 %) of calcium phosphate compounds (CaP, hydroxyapatite and β-tricalcium phosphate, HA/β-TCP) were investigated for their biocompatibility and mechanical properties. The proposed gel rapidly settled (<3 min) and formed a stable gel at body temperature (i.e. 37 °C). The chemical compositions and crystallinity of the gels were characterised by FTIR and XRD. The surface morphology and microstructure of the gels were characterised using SEM. The physical properties (such as water uptake, washout resistant and syringeability), compressive modulus and biocompatibility properties (cell cytotoxicity) of the gels were also studied. The RS chitosan gels showed the highest water uptake ability (>2000 %), compressive modulus (up to 26 kPa) and better cell (Saos-2) compatibility compared to the RC chitosan. This study showed that RS chitosan is a promising alternative to commercially available crab/shrimp chitosan for producing injectable gels for tissue engineering applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huang Z, Tian J, Yu B, Xu Y, Feng Q (2009) A bone-like nano-hydroxyapatite/collagen loaded injectable scaffold. Biomed Mater 4:055005

    Article  Google Scholar 

  2. Soundrapandian C, Datta S, Kundu B, Basu D, Sa B (2010) Porous bioactive glass scaffolds for local drug delivery in osteomyelitis: development and in vitro characterization. AAPS PharmSciTech 11:1675–1683

    Article  Google Scholar 

  3. Mishra D, Bhunia B, Banerjee I, Datta P, Dhara S, Maiti TK (2011) Enzymatically crosslinked carboxymethyl–chitosan/gelatin/nano-hydroxyapatite injectable gels for in situ bone tissue engineering application. Mater Sci Eng, C 31:1295–1304

    Article  Google Scholar 

  4. Bi L, Cheng W, Fan H, Pei G (2010) Reconstruction of goat tibial defects using an injectable tricalcium phosphate/chitosan in combination with autologous platelet-rich plasma. Biomaterials 31:3201–3211

    Article  Google Scholar 

  5. García Cruz DM, Escobar Ivirico JL, Gomes MM, Gómez Ribelles JL, Sánchez MS, Reis RL et al (2008) Chitosan microparticles as injectable scaffolds for tissue engineering. J Tissue Eng Regen Med 2:378–380

    Article  Google Scholar 

  6. Huang Z, Feng Q, Yu B, Li S (2011) Biomimetic properties of an injectable chitosan/nano-hydroxyapatite/collagen composite. Mater Sci Eng, C 31:683–687

    Article  Google Scholar 

  7. Shen D, Wang X, Zhang L, Zhao X, Li J, Cheng K et al (2011) The amelioration of cardiac dysfunction after myocardial infarction by the injection of keratin biomaterials derived from human hair. Biomaterials 32:9290–9299

    Article  Google Scholar 

  8. Eeckman F, Moës AJ, Amighi K (2004) Poly(N-isopropylacrylamide) copolymers for constant temperature controlled drug delivery. Int J Pharm 273:109–119

    Article  Google Scholar 

  9. Stile RA, Chung E, Burghardt WR, Healy KE (2004) Poly(N-isopropylacrylamide)-based semi-interpenetrating polymer networks for tissue engineering applications. Effects of linear poly(acrylic acid) chains on rheology. J Biomater Sci Polym Ed 15:865–878

    Article  Google Scholar 

  10. Thein-Han WW, Misra RDK (2009) Biomimetic chitosan–nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater 5:1182–1197

    Article  Google Scholar 

  11. Qiu Y (2008) Chitosan derivatives for tissue engineering. Clemson University, Clemson

    Google Scholar 

  12. Jiang CJ, Xu MQ (2006) Kinetics of heterogeneous deacetylation of β-chitin. Chem Eng Technol 29:511–516

    Article  Google Scholar 

  13. Kurita K (2001) Controlled functionalization of the polysaccharide chitin. Prog Polym Sci 26:1921–1971

    Article  Google Scholar 

  14. Kurita K, Tomita K, Tada T, Ishii S, Nishimura S-I, Shimoda K (1993) Squid chitin as a potential alternative chitin source: deacetylation behavior and characteristic properties. J Polym Sci, Part A: Polym Chem 31:485–491

    Article  Google Scholar 

  15. Lima IS, Airoldi C (2004) A thermodynamic investigation on chitosan–divalent cation interactions. Thermochim Acta 421:133–139

    Article  Google Scholar 

  16. Susana Cortizo M, Berghoff CF, Alessandrini JL (2008) Characterization of chitin from Illex argentinus squid pen. Carbohydr Polym 74:10–15

    Article  Google Scholar 

  17. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  Google Scholar 

  18. Chandumpai A, Singhpibulporn N, Faroongsarng D, Sornprasit P (2004) Preparation and physico-chemical characterization of chitin and chitosan from the pens of the squid species, Loligo lessoniana and Loligo formosana. Carbohydr Polym 58:467–474

    Article  Google Scholar 

  19. Liu H, Li H, Cheng W, Yang Y, Zhu M, Zhou C (2006) Novel injectable calcium phosphate/chitosan composites for bone substitute materials. Acta Biomater 2:557–565

    Article  Google Scholar 

  20. Cho J, Heuzey M-C, Bégin A, Carreau PJ (2005) Physical gelation of chitosan in the presence of β-glycerophosphate: the effect of temperature. Biomacromolecules 6:3267–3275

    Article  Google Scholar 

  21. Zhou HY, Jiang LJ, Cao PP, Li JB, Chen XG (2015) Glycerophosphate-based chitosan thermosensitive hydrogels and their biomedical applications. Carbohydr Polym 117:524–536

    Article  Google Scholar 

  22. Shavandi A, Bekhit AE-D, Ali A, Sun Z (2015) A novel squid pen chitosan/hydroxyapatite/β-tricalcium phosphate composite for bone tissue engineering. Mater Sci Eng C 55:373–383

    Article  Google Scholar 

  23. Shavandi A, Bekhit AE-D, Ali A, Sun Z, Ratnayake JT (2015) Microwave-assisted synthesis of high purity β-tricalcium phosphate crystalline powder from the waste of Green mussel shells (Perna canaliculus). Powder Technol 273:33–39

    Article  Google Scholar 

  24. Shavandi A, Bekhit AE-D, Ali A, Sun Z (2015) Synthesis of nano-hydroxyapatite (nHA) from waste mussel shells using a rapid microwave method. Mater Chem Phys 149–150:607–616

    Article  Google Scholar 

  25. Chaussard G, Domard A (2004) New aspects of the extraction of chitin from squid pens. Biomacromolecules 5:559–564

    Article  Google Scholar 

  26. Youn DK, No HK, Prinyawiwatkul W (2013) Preparation and characteristics of squid pen β-chitin prepared under optimal deproteinisation and demineralisation condition. Int J Food Sci Technol 48:571–577

    Article  Google Scholar 

  27. Xu J, McCarthy SP, Gross RA, Kaplan DL (1996) Chitosan film acylation and effects on biodegradability. Macromolecules 29:3436–3440

    Article  Google Scholar 

  28. Yen M-T, Yang J-H, Mau J-L (2009) Physicochemical characterization of chitin and chitosan from crab shells. Carbohydr Polym 75:15–21

    Article  Google Scholar 

  29. Yasmeen S, Lo MK, Bajracharya S, Roldo M (2014) Injectable scaffolds for bone regeneration. Langmuir 30:12977–12985

    Article  Google Scholar 

  30. Ahmadi R, de Bruijn JD (2008) Biocompatibility and gelation of chitosan–glycerol phosphate hydrogels. J Biomed Mater Res, Part A 86:824–832

    Article  Google Scholar 

  31. Tan H, Chu CR, Payne KA, Marra KG (2009) Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30:2499–2506

    Article  Google Scholar 

  32. Meng D, Dong L, Wen Y, Xie Q (2015) Effects of adding resorbable chitosan microspheres to calcium phosphate cements for bone regeneration. Mater Sci Eng C Mater Biol Appl 47:266–272

    Article  Google Scholar 

  33. Zhang X, Zhu L, Lv H, Cao Y, Liu Y, Xu Y et al (2012) Repair of rabbit femoral condyle bone defects with injectable nanohydroxyapatite/chitosan composites. J Mater Sci Mater Med 23:1941–1949

    Article  Google Scholar 

  34. Li F, Liu Y, Ding Y, Xie Q (2014) A new injectable in situ forming hydroxyapatite and thermosensitive chitosan gel promoted by Na2CO3. Soft Matter 10:2292–2303

    Article  Google Scholar 

  35. Wang D, Zhang Y, Hong Z (2014) Novel fast-setting chitosan/β-dicalcium silicate bone cements with high compressive strength and bioactivity. Ceram Int 40:9799–9808

    Article  Google Scholar 

  36. Fan M, Ma Y, Mao J, Zhang Z, Tan H (2015) Cytocompatible in situ forming chitosan/hyaluronan hydrogels via a metal-free click chemistry for soft tissue engineering. Acta Biomater 20:60–68

    Article  Google Scholar 

  37. Biazar E, HeidariKeshel S, Tavirani MR, Jahandideh R (2015) Bone reconstruction in rat calvarial defects by chitosan/hydroxyapatite nanoparticles scaffold loaded with unrestricted somatic stem cells. Artif Cells Nanomed Biotechnol 43:112–116

    Article  Google Scholar 

  38. Shirosaki Y, Hirai M, Hayakawa S, Fujii E, Lopes MA, Santos JD et al (2015) Preparation and in vitro cytocompatibility of chitosan–siloxane hybrid hydrogels. J Biomed Mater Res, Part A 103:289–299

    Article  Google Scholar 

  39. Fatimi A, Tassin JF, Turczyn R, Axelos MA, Weiss P (2009) Gelation studies of a cellulose-based biohydrogel: the influence of pH, temperature and sterilization. Acta Biomater 5:3423–3432

    Article  Google Scholar 

  40. Ganji F, Abdekhodaie MJ, Ramazani SAA (2007) Gelation time and degradation rate of chitosan-based injectable hydrogel. J Sol-Gel Sci Technol 42:47–53

    Article  Google Scholar 

  41. Kumar GS, Thamizhavel A, Girija EK (2012) Microwave conversion of eggshells into flower-like hydroxyapatite nanostructure for biomedical applications. Mater Lett 76:198–200

    Article  Google Scholar 

  42. Dewavrin J-Y, Hamzavi N, Shim VPW, Raghunath M (2014) Tuning the architecture of three-dimensional collagen hydrogels by physiological macromolecular crowding. Acta Biomater 10:4351–4359

    Article  Google Scholar 

  43. Moreau JL, Xu HHK (2009) Mesenchymal stem cell proliferation and differentiation on an injectable calcium phosphate–chitosan composite scaffold. Biomaterials 30:2675–2682

    Article  Google Scholar 

  44. Ta HT, Dass CR, Dunstan DE (2008) Injectable chitosan hydrogels for localised cancer therapy. J Controll Release 126:205–216

    Article  Google Scholar 

  45. Goldberg RN, Kishore N, Lennen RM (2002) Thermodynamic quantities for the ionization reactions of buffers. J Phys Chem Ref Data 31:231–370

    Article  Google Scholar 

  46. Burckbuchler V, Mekhloufi G, Giteau AP, Grossiord JL, Huille S, Agnely F (2010) Rheological and syringeability properties of highly concentrated human polyclonal immunoglobulin solutions. Eur J Pharm Biopharm 76:351–356

    Article  Google Scholar 

  47. Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD et al (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21:2155–2161

    Article  Google Scholar 

  48. Xu HHK, Simon CG Jr (2005) Fast setting calcium phosphate–chitosan scaffold: mechanical properties and biocompatibility. Biomaterials 26:1337–1348

    Article  Google Scholar 

  49. Wang X, Chen L, Xiang H, Ye J (2007) Influence of anti-washout agents on the rheological properties and injectability of a calcium phosphate cement. J Biomed Mater Res B Appl Biomater 81B:410–418

    Article  Google Scholar 

  50. Miyamoto Y, Ishikawa K, Takechi M, Yuasa M, Kon M, Nagayama M et al (1996) Non-decay type fast-setting calcium phosphate cement: setting behaviour in calf serum and its tissue response. Biomaterials 17:1429–1435

    Article  Google Scholar 

  51. Rohindra DR, Nand AV, Khurma JR (2004) Swelling properties of chitosan hydrogels. S Pac J Nat Appl Sci 22:32–35

    Google Scholar 

  52. Barabás R, Czikó M, Dékány I, Bizo L, Bogya E (2013) Comparative study of particle size analysis of hydroxyapatite-based nanomaterials. Chem Pap 67:1414–1423

    Article  Google Scholar 

  53. Rudall KM, Kenchington W (1973) The chitin system. Biol Rev 48:597–633

    Article  Google Scholar 

  54. Reys LL, Silva SS, Oliveira JM, Caridade SG, Mano JF, Silva TH et al (2013) Revealing the potential of squid chitosan-based structures for biomedical applications. Biomed Mater 8:1–11

    Article  Google Scholar 

  55. Teng SH, Lee EJ, Yoon BH, Shin DS, Kim HE, Oh JS (2009) Chitosan/nanohydroxyapatite composite membranes via dynamic filtration for guided bone regeneration. J Biomed Mater Res, Part A 88:569–580

    Article  Google Scholar 

  56. Elhendawi H, Felfel RM, Abd El-Hady BM, Reicha FM (2014) Effect of synthesis temperature on the crystallization and growth of in situ prepared nanohydroxyapatite in chitosan matrix. ISRN Biomater 2014:8

    Article  Google Scholar 

  57. Meneghini C, Dalconi MC, Nuzzo S, Mobilio S, Wenk RH (2003) Rietveld refinement on X-ray diffraction patterns of bioapatite in human fetal bones. Biophys J 84:2021–2029

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the facilities as well as scientific and technical assistance from staff at the Otago Centre for Electron Microscopy (OCEM) at University of Otago. We would also like to thank Mr Damian Wallas for his help and support to use XRD. The first author acknowledges the PhD scholarship awarded by University of Otago, New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Shavandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shavandi, A., Bekhit, A.ED.A., Sun, Z. et al. Injectable gel from squid pen chitosan for bone tissue engineering applications. J Sol-Gel Sci Technol 77, 675–687 (2016). https://doi.org/10.1007/s10971-015-3899-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3899-6

Keywords

Navigation