Skip to main content
Log in

Fabrication and characterization of Plantago psyllium mucilage/ chitosan composite scaffold: Physico-mechanical and antibacterial properties

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Mucilage/ polymer hybrids are promising materials for biomedical applications and tissue engineering. Plantago psyllium mucilage/ chitosan composite scaffold was prepared by the freeze-drying method. The different ratio (v/v) of mucilage (2.5%, 5%) and chitosan (5%) was used to obtain the perfect scaffold with optimum properties. The scanning electron microscope images exhibited composite scaffolds have relatively large cylindrical porosity in which small spherical pores are enclosed and the porosity is reduced and come close to spherical shape by increasing the concentration of Plantago psyllium mucilage from 2.5% to 5%. The in vitro degradation studies showed the decreasing weight loss % with the addition of chitosan. Antibacterial activity of the obtained scaffolds against Escherichia coli and Staphylococcus aureus bacteria indicated acceptable activity against both of them.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. M. Rodríguez-Vázquez, B. Vega-Ruiz, R. Ramos-Zúñiga, D.A. Saldaña-Koppel, L.F. Quiñones-Olvera, Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. Biomed. Res. Int. (2015). https://doi.org/10.1155/2015/821279

    Article  Google Scholar 

  2. F. Croisier, C. Jérôme, Chitosan-based biomaterials for tissue engineering. Eur. Polym. J. 49, 780–792 (2013)

    Article  CAS  Google Scholar 

  3. A. Mohandas, S. Deepthi, R. Biswas, R. Jayakumar, Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings. Bioact. Mater. 3(2018), 267–277 (2018)

    Article  Google Scholar 

  4. R. Zeeshan, Z. Mutahir et al., Hydroxypropylmethyl cellulose (HPMC) crosslinked chitosan (CH) based scaffolds containing bioactive glass (BG) and zinc oxide (ZnO) for alveolar bone repair. Carbohydr. Polym 193, 9–18 (2018)

    Article  CAS  Google Scholar 

  5. T. Vieira, J.C. Silva, A.B. do Rego, J.P. Borges, C. Henriques, Electrospun biodegradable chitosan based-poly (urethane urea) scaffolds for soft tissue engineering. Mate. Sci. Eng. C (2019)‏ doi: https://doi.org/10.1016/j.msec.2019.109819

  6. M. Shakir, R. Jolly et al., Resol based chitosan/nano-hydroxyapatite nanoensemble for effective bone tissue engineering. Carbohydr. Polym. 179, 317–327 (2018)

    Article  CAS  Google Scholar 

  7. H.T. Lu, T.W. Lu, C.H. Chen, F.L. Mi, Development of genipin-crosslinked and fucoidan-adsorbed nano-hydroxyapatite/hydroxypropyl chitosan composite scaffolds for bone tissue engineering. Int. J. Biol. Macromol. 128, 973–984 (2019)

    Article  CAS  Google Scholar 

  8. K. Saekhor, W. Udomsinprasert, S. Honsawek, W. Tachaboonyakiat, Preparation of an injectable modified chitosan-based hydrogel approaching for bone tissue engineering. Int. J. Biol. Macromol. 123, 167–173 (2019)

    Article  CAS  Google Scholar 

  9. S. Shafiee, H. Abbastabar Ahangar, A. Saffar, Taguchi method optimization for synthesis of Fe3O4 @chitosan/Tragacanth Gum nanocomposite as a drug delivery system. Carbohdr. Polym. 7: 114982. https://doi.org/10.1016/j.carbpol.2019.114982. (2019)

  10. G. Archana, K. Sabina et al., Preparation and characterization of mucilage polysaccharide for biomedical applications. Carbohydr. Polym. 98, 89–94 (2013)

    Article  CAS  Google Scholar 

  11. N.C. Ngwuluka, N.A. Ochekpe, O.I. Aruoma, Naturapolyceutics: The Science of Utilizing Natural Polymers for Drug Delivery. Polymers 6, 1312–1332 (2014)

    Article  Google Scholar 

  12. T. Bal, S. Swain, Microwave assisted synthesis of polyacrylamide grafted polymeric blend of fenugreek seed mucilage-Polyvinyl alcohol (FSM-PVA-g-PAM) and its characterizations as tissue engineered scaffold and as a drug delivery device. DARU J. Pharm. Sci. (2019). https://doi.org/10.1007/s40199-019-00237-8

    Article  Google Scholar 

  13. G.K. Jani, D.P. Shah, V.D. Prajapati, V.C. Jain, Gums and mucilages: versatile excipients for pharmaceutical formulations. Asian J. Pharm. Sci. 4, 309–323 (2009)

    Google Scholar 

  14. M. Saeedi, K. Morteza-Semnani, F. Ansoroudi, S. Fallah, G. Amin, Evaluation of binding properties of Plantago psyllium seed mucilage. Acta Pharm. 60, 339–348 (2010)

    Article  Google Scholar 

  15. T. Ponrasu, P. Vishal, R. Kannan, L. Suguna, V. Muthuvijayan, Isabgol–silk fibroin 3D composite scaffolds as an effective dermal substitute for cutaneous wound healing in rats. RSC Adv. 6, 73617–73626 (2016)

    Article  CAS  Google Scholar 

  16. S. Mirzaei, V. Javanbakht, Dye removal from aqueous solution by a novel dual cross-linked biocomposite obtained from mucilage of Plantago Psyllium and eggshell membrane. Int. J. Biol. Macromol. 134, 1187–1204 (2019)

    Article  CAS  Google Scholar 

  17. I. Zia, S. Mirza, R. Jolly, A. Rehman, R. Ullah, M. Shakir, Trigonella foenum graecum seed polysaccharide coupled nano hydroxyapatite-chitosan: A ternary nanocomposite for bone tissue engineering. Inter. J. Biol. Macromol. 124, 88–101 (2019)

    Article  CAS  Google Scholar 

  18. A.R. Allafchian, S.A.H. Jalali, S.E. Mousavi, Biocompatible biodegradable polycaprolactone/basil seed mucilage scaffold for cell culture. IET Nanobiotechnol. 12(2018), 1108–1113 (2018)

    Article  Google Scholar 

  19. H. Majmudar, V. Mourya, S. Devdhe, R. Chandak, Pharmaceutical Applications of Ispaghula Husk: Mucilage. Int. J. Pharm. Sci. Rev. Res. 18(2013), 49–55 (2013)

    CAS  Google Scholar 

  20. Q. Guo, S.W. Cui, Q. Wang, J.C. Young, Fractionation and physicochemical characterization of psyllium gum. Carbohydr. Polym. 73(2008), 35–43 (2008)

    Article  CAS  Google Scholar 

  21. A.I. Canas, J.P. Delgado, C. Gartner, Biocompatible scaffolds composed of chemically crosslinked chitosan and gelatin for tissue engineering. J. Appl. Polym. Sci. 43814(2016), 2–10 (2016)

    Google Scholar 

  22. D. Kumar, R. Chandra, R. Dubey, Synthesis and characterisation of cross-linked polymers of acrylic acid and psyllium mucilage (Psy-cl-AA). J. Technol. Adv. Sci. Res. 2, 185–189 (2016)

    Google Scholar 

  23. H.N. Öztop, D. Saraydin, S. Cetinus, pH-sensitive chitosan films for baker’s yeast immobilization. Appl. Biochem. Biotechnol. 101(2002), 239–249 (2002)

    Article  Google Scholar 

  24. B. Leukers, H. Gülkan, S.H. Irsen, S. Milz, C. Tille, M. Schieker, H. Seitz, Hydroxyapatite scaffolds fir bone tissue engineering made by 3D printing". J. Mater. Sci. Mater. Med. 16, 1121–1124 (2005)

    Article  CAS  Google Scholar 

  25. A. Kara, S. Tamburaci, F. Tihminlioglu, H. Havitcioglu, Bioactive fish scale incorporated chitosan biocomposite scaffolds for bone tissue engineering. Int. J. Biol. Macromol. 130, 266–279 (2019)

    Article  CAS  Google Scholar 

  26. M.R. Salton, Studies of the bacterial cell wall: IV. The composition of the cell walls of some gram-positive and gram-negative bacteria. Biochim. Biophys. Acta 10, 512–523 (1953)

    Article  CAS  Google Scholar 

  27. Z. Emami-Karvani, P. Chehrazi, Antibacterial activity of ZnO nanoparticle on gram-positive and gram-negative bacteria. Afr. J. Microbiol. Res. 5, 1368–1373 (2011)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their personal thanks to Islamic Azad University, Najafabad, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Abbastabar Ahangar.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beheshti, F., Ahangar, H.A. & Poorazizi, E. Fabrication and characterization of Plantago psyllium mucilage/ chitosan composite scaffold: Physico-mechanical and antibacterial properties. Journal of Materials Research 37, 1440–1450 (2022). https://doi.org/10.1557/s43578-022-00544-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00544-y

Keywords

Navigation