Skip to main content
Log in

Synthesis of ultra-fine and controllable size distribution nanocrystalline MgAl2O4 powders and ascertainment of aluminum loss by introducing inert atmosphere pre-calcination during combustion

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Nanocrystalline magnesium aluminate spinel (MgAl2O4) powders were synthesized in this study by employing a modified nitrate–citrate combustion route, in which the heat treatment was continuously performed by two separate processes. One process was in nitrogen during the carbonization of the precursors, and the other was subsequently in air. This can greatly decrease the heat release during the combustion process. X-ray diffraction and high-resolution transmission electron microscopy, differential scanning calorimetry, thermogravimetry, infrared spectroscopy, and inductively coupled plasma atomic emission spectrometer were utilized to reveal the reaction process and characterize the physical properties of precursors and powders. To achieve well-crystallized spinel powders with smallest possible and controllable crystallite sizes, the effect of carbonization in nitrogen on the calcined spinel powders was investigated in detail. The introduction of the inert atmosphere at the pre-calcination stage, with appropriate temperature and holding time, allowed ultra-fine, well-crystallized and size-controllable MgAl2O4 powders with average crystallite sizes of 5–25 nm to be obtained. Despite the benefit from the pre-calcination in nitrogen, it was found that the stoichiometry of precursors can be compromised due to the loss of aluminum during the heat treatment in N2 as the temperature was too high (>900 °C) with sufficient holding time. The mechanism of the carbothermal reduction was investigated in this study.

Graphical Abstract

By introducing inert atmosphere pre-calcination combustion, ultra-fine well-crystallized and crystalline size-controllable MgAl2O4 spinel powders were thus obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chandradass J, Balasubramanian M, Bae DS, Kim J, Kim KH (2010) Effect of water to surfactant ratio (R) on the particle size of MgAl2O4 nanoparticle prepared via reverse micelle process. J Alloys Compd 491(1–2):L25–L28. doi:10.1016/j.jallcom.2009.10.213

    Article  Google Scholar 

  2. du Merac MR, Kleebe HJ, Muller MM, Reimanis IE (2013) Fifty years of research and development coming to fruition; unraveling the complex interactions during processing of transparent magnesium aluminate (MgAl2O4) spinel. J Am Ceram Soc 96(11):3341–3365. doi:10.1111/jace.12637

    Article  Google Scholar 

  3. Rufner JF, Castro RHR, Holland TB, van Benthem K (2014) Mechanical properties of individual MgAl2O4 agglomerates and their effects on densification. Acta Mater 69:187–195. doi:10.1016/j.actamat.2014.01.051

    Article  Google Scholar 

  4. Johannessen T, Jenson JR, Mosleh M, Johansen J, Quaade U, Livbjerg H (2004) Flame synthesis of nanoparticles—applications in catalysis and product/process engineering. Chem Eng Res Des 82(A11):1444–1452. doi:10.1205/cerd.82.11.1444.52025

    Article  Google Scholar 

  5. Laobuthee A, Wongkasemjit S, Traversa E, Laine RM (2000) MgAl2O4 spinel powders from oxide one pot synthesis (OOPS) process for ceramic humidity sensors. J Eur Ceram Soc 20(2):91–97. doi:10.1016/s0955-2219(99)00153-3

    Article  Google Scholar 

  6. Gritsyna VT, Kazarinov YG, Kobyakov VA, Sickafus KE (2004) The origin of radiation resistance of magnesium aluminate spinel. In: Wang LM, Fromknecht R, Snead LL, Downey DF, Takahashi H (eds) Radiation effects and ion-beam processing of materials, vol 792., Materials research society symposium proceedingsMaterials Research Society, Warrendale, pp 117–122

    Google Scholar 

  7. Thome L, Gentils A, Jagielski J, Garrido F, Thome T (2007) Radiation stability of ceramics: test cases of zirconia and spinel. Vacuum 81(10):1264–1270. doi:10.1016/j.vacuum.2007.01.021

    Article  Google Scholar 

  8. Jouini A, Yoshikawa A, Guyot Y, Bremer A, Fukuda T, Boulon G (2007) Potential candidate for new tunable solid-state laser between 1 and 2 μm: ni2+-doped MgAl2O4 spinel grown by the micro-pulling-down method. Opt Mater 30(1):47–49. doi:10.1016/j.optmat.2006.11.027

    Article  Google Scholar 

  9. Singh V, Chakradhar RPS, Rao JL, Kim D-K (2007) Synthesis, characterization, photoluminescence and EPR investigations of Mn doped MgAl2O4 phosphors. J Solid State Chem 180(7):2067–2074. doi:10.1016/j.jssc.2007.04.030

    Article  Google Scholar 

  10. Tan DY, Zhou W, Ouyang WZ, Mi ZY, Kong LP, Xiao WS, Zhu K, Chen B (2014) Growth of magnesium aluminate nanocrystallites. Crystengcomm 16(8):1579–1583. doi:10.1039/c3ce41718b

    Article  Google Scholar 

  11. Alvar EN, Rezaei M (2009) Mesoporous nanocrystalline MgAl2O4 spinel and its applications as support for Ni catalyst in dry reforming. Scr Mater 61(2):212–215. doi:10.1016/j.scriptamat.2009.03.047

    Article  Google Scholar 

  12. Castro RHR (2013) On the thermodynamic stability of nanocrystalline ceramics. Mater Lett 96:45–56. doi:10.1016/j.matlet.2013.01.007

    Article  Google Scholar 

  13. Lu TC, Chang XH, Qi JQ, Luo XJ, Wei QM, Zhu S, Sun K, Lian J, Wang LM (2006) Low-temperature high-pressure preparation of transparent nanocrystalline MgAl2O4 ceramics. Appl Phys Lett 88:213120. doi:10.1063/1.2207571

    Article  Google Scholar 

  14. Liu K, He DW, Zhou XL, Wang HM, Lu TC, Chang J (2013) Method of preparation and thermodynamic properties of transparent Y3Al5O12 nanoceramics. J Therm Anal Calorim 111(1):289–294. doi:10.1007/s10973-012-2307-5

    Article  Google Scholar 

  15. Duraes L, Matias T, Segadaes AM, Campos J, Portugal A (2012) MgAl2O4 spinel synthesis by combustion and detonation reactions: a thermochemical evaluation. J Eur Ceram Soc 32(12):3161–3170. doi:10.1016/j.jeurceramsoc.2012.04.031

    Article  Google Scholar 

  16. Nassar MY, Ahmed IS, Samir I (2014) A novel synthetic route for magnesium aluminate (MgAl2O4) nanoparticles using sol–gel auto combustion method and their photocatalytic properties. Spectrochim Acta A Mol Biomol Spectrosc 131:329–334. doi:10.1016/j.saa.2014.04.040

    Article  Google Scholar 

  17. Meyer F, Hempelmann R, Mathur S, Veith M (1999) Microemulsion mediated sol–gel synthesis of nano-scaled MgAl2O4 (M=Co, Ni, Cu) spinels from single-source heterobimetallic alkoxide precursors. J Mater Chem 9(8):1755–1763. doi:10.1039/a900014c

    Article  Google Scholar 

  18. Li JG, Ikegami T, Lee JH, Mori T, Yajima Y (2001) Synthesis of Mg–Al spinel powder via precipitation using ammonium bicarbonate as the precipitant. J Eur Ceram Soc 21(2):139–148. doi:10.1016/s0955-2219(00)00188-6

    Article  Google Scholar 

  19. Khalil NM, Hassan MB, Ewais EMM, Saleh FA (2010) Sintering, mechanical and refractory properties of MA spinel prepared via co-precipitation and sol–gel techniques. J Alloys Compd 496(1–2):600–607. doi:10.1016/j.jallcom.2010.02.123

    Article  Google Scholar 

  20. Rashad MM, Zaki ZI, El-Shall H (2009) A novel approach for synthesis of nanocrystalline MgAl2O4 powders by co-precipitation method. J Mater Sci 44(11):2992–2998. doi:10.1007/s10853-009-3397-8

    Article  Google Scholar 

  21. Behera SK, Barpanda P, Pratihar SK, Bhattacharyya S (2004) Synthesis of magnesium–aluminium spinel from autoignition of citrate–nitrate gel. Mater Lett 58(9):1451–1455. doi:10.1016/j.matlet.2003.10.004

    Article  Google Scholar 

  22. Zhang HJ, Jia XL, Liu ZJ, Li ZZ (2004) The low temperature preparation of nanocrystalline MgAl2O4 spinel by citrate sol–gel process. Mater Lett 58(10):1625–1628. doi:10.1016/j.matlet.2003.09.051

    Article  Google Scholar 

  23. Ding Y, Zhang GT, Wu H, Hai B, Wang LB, Qian YT (2001) Nanoscale magnesium hydroxide and magnesium oxide powders: control over size, shape, and structure via hydrothermal synthesis. Chem Mater 13(2):435–440. doi:10.1021/cm000607e

    Article  Google Scholar 

  24. Liu ZQ, Wang WI, Liu XM, Wu MC, Li D, Zeng Z (2004) Hydrothermal synthesis of nanostructured spinel lithium manganese oxide. J Solid State Chem 177(4–5):1585–1591. doi:10.1016/j.jssc.2003.12.009

    Article  Google Scholar 

  25. Bickmore CR, Waldner KF, Treadwell DR, Laine RM (1996) Ultrafine spinel powders by flame spray pyrolysis of a magnesium aluminum double alkoxide. J Am Ceram Soc 79(5):1419–1423. doi:10.1111/j.1151-2916.1996.tb08608.x

    Article  Google Scholar 

  26. Ganesh I, Johnson R, Rao GVN, Mahajan YR, Madavendra SS, Reddy BM (2005) Microwave-assisted combustion synthesis of nanocrystalline MgAl2O4 spinel powder. Ceram Int 31(1):67–74. doi:10.1016/j.ceramint.2004.03.036

    Article  Google Scholar 

  27. Torkian L, Amini MM, Bahrami Z (2011) Synthesis of nano crystalline MgAl2O4 spinel powder by microwave assisted combustion. J Inorg Mater 26(5):550–554. doi:10.3724/sp.j.1077.2011.10815

    Article  Google Scholar 

  28. McHale JM, Navrotsky A, Kirkpatrick RJ (1998) Nanocrystalline spinel from freeze-dried nitrates: synthesis, energetics of produce formation, and cation distribution. Chem Mater 10(4):1083–1090. doi:10.1021/cm9706659

    Article  Google Scholar 

  29. Domanski D, Urretavizcaya G, Castro FJ, Gennari FC (2004) Mechanochemical synthesis of magnesium aluminate spinel powder at room temperature. J Am Ceram Soc 87(11):2020–2024

    Article  Google Scholar 

  30. Tsvigunov AN, Belyakov AV, Sarkisov PD, Faikov PP, Andrianov NT, Zhadanov BV, Ivleva YV (2006) Synthesis of nonstoichiometric aluminomagnesium spinel with a tetragonal lattice (review). Glass Ceram 63(11–12):371–376. doi:10.1007/s10717-006-0126-5

    Article  Google Scholar 

  31. Pal S, Bandyopadhyay AK, Mukherjee S, Samaddar BN, Pal PG (2011) Enhancement of MgAl2O4 spinel formation from coprecipitated precursor by powder processing. Bull Mater Sci 34(4):865–872. doi:10.1007/s12034-011-0207-0

    Article  Google Scholar 

  32. Yuan Y, Zhang SR, You W (2004) Synthesis of MgAl2O4 spinel nanometer powder via biology polysaccharide assisted sol–gel process. J Solgel Sci Technol 30(3):223–227. doi:10.1023/B:JSST.0000039529.49764.7d

    Article  Google Scholar 

  33. Salavati-Niasari M, Davar F, Farhadi M (2009) Synthesis and characterization of spinel-type CuAl2O4 nanocrystalline by modified sol–gel method. J Solgel Sci Technol 51(1):48–52. doi:10.1007/s10971-009-1940-3

    Article  Google Scholar 

  34. Biamino S, Badini C (2004) Combustion synthesis of lanthanum chromite starting from water solutions: investigation of process mechanism by DTA–TGA–MS. J Eur Ceram Soc 24(10–11):3021–3034. doi:10.1016/j.jeurceramsoc.2003.10.005

    Article  Google Scholar 

  35. Chen B, Lutker K, Raju SV, Yan J, Kanitpanyacharoen W, Lei J, Yang S, Wenk H-R, H-k Mao, Williams Q (2012) Texture of nanocrystalline nickel: probing the lower size limit of dislocation activity. Science 338(6113):1448–1451. doi:10.1126/science.1228211

    Article  Google Scholar 

  36. Saberi A, Golestani-Fard F, Willert-Porada M, Negahdari Z, Liebscher C, Gossler B (2009) A novel approach to synthesis of nanosize MgAl2O4 spinel powder through sol–gel citrate technique and subsequent heat treatment. Ceram Int 35(3):933–937. doi:10.1016/j.ceramint.2008.03.011

    Article  Google Scholar 

  37. Alinejad B, Sarpoolaky H, Beitollahi A, Saberi A, Afshar S (2008) Synthesis and characterization of nanocrystalline MgAl2O4 spinel via sucrose process. Mater Res Bull 43(5):1188–1194. doi:10.1016/j.materresbull.2007.05.031

    Article  Google Scholar 

  38. Alvar EN, Rezaei M, Alvar HN (2010) Synthesis of mesoporous nanocrystalline MgAl2O4 spinel via surfactant assisted precipitation route. Powder Technol 198(2):275–278. doi:10.1016/j.powtec.2009.11.019

    Article  Google Scholar 

  39. Saberi A, Golestani-Fard F, Sarpoolaky H, Willert-Porada M, Gerdes T, Simon R (2008) Chemical synthesis of nanocrystalline magnesium aluminate spinel via nitrate–citrate combustion route. J Alloys Compd 462(1–2):142–146. doi:10.1016/j.jallcom.2007.07.101

    Article  Google Scholar 

  40. Naskar MK, Chatterjee M (2005) Magnesium aluminate (MgAl2O4) spinel powders from water-based sols. J Am Ceram Soc 88(1):38–44

    Article  Google Scholar 

  41. Hallstedt B (1992) Thermodynamic assessment of the system MgO–Al2O3. J Am Ceram Soc 75(6):1497–1507. doi:10.1111/j.1151-2916.1992.tb04216.x

    Article  Google Scholar 

  42. Lefort P, Tetard D, Tristant P (1993) Formation of aluminium carbide by carbothermal reduction of alumina: role of the gaseous aluminium phase. J Eur Ceram Soc 12(2):123–129. doi:10.1016/0955-2219(93)90132-b

    Article  Google Scholar 

  43. Xi Shengqi, Liu Xinkuan, Li Pengliang, Zhou Jingen (2008) AlN ceramics synthesized by carbothermal reduction of mechanical activated Al2O3. J Alloys Compd. doi:10.1016/j.jallcom.2007.02.151

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of the People’s Republic of China under Grant Nos. 11145006 and 91326103, the ITER Program (No. 2014GB125002), the Major Science and Technology Programs of China, the Foundation of Key Laboratory of Neutron Physics, CAEP, the National High Technology Research and Development Program (863), the Science and Technology Innovation Team of Sichuan Province under Grant No. 15CXTD0025, and the Foundation of Science and Technology Bureau of Shantou, Guangdong Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianqi Qi or Tiecheng Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Xie, X., Qi, J. et al. Synthesis of ultra-fine and controllable size distribution nanocrystalline MgAl2O4 powders and ascertainment of aluminum loss by introducing inert atmosphere pre-calcination during combustion. J Sol-Gel Sci Technol 75, 336–344 (2015). https://doi.org/10.1007/s10971-015-3704-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3704-6

Keywords

Navigation