Skip to main content
Log in

Self-healing high-performance thermosets utilizing the furan/maleimide Diels-Alder and amine/maleimide Michael reactions

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The reaction of furfurylamine (FA) and 4,4′-bismaleimidodiphenylmethane (BMI) at a molar ratio of 2/1 generated a product (FABMI) mainly composed of 4,4′-bis(2-furfurylaminosuccinimido)diphenylmethane. Mixtures of FABMI, BMI and p-xylylenediamine (XDA) at FABMI/BMI/XDA molar ratios of 1/3/1, 2/4/1, 1/4/1 and 2/6/1 were prepolymerized at 120 °C, hot-pressed at 130–140 °C, and then annealed at 60 °C to produce cured products. The FT-IR analysis revealed that the Michael addition and Diels-Alder (DA) reactions occurred for all the cured products. FABMI-BMI-XDAs with relatively low feed FABMI mass fractions displayed excellent 5% mass loss temperatures higher than 400 °C. The cured product with the highest feed XDA mass fraction exhibited the highest flexural strength, modulus and strain at break among all the cured products. Onset temperatures of the endothermal retro DA reaction for the cured products were in the ranges of 140–150 °C. All the cured products were at least twice healed by the thermal treatment at 150 °C for 20 min and then 60 °C for 48 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Scheme 3
Scheme 4
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dodiuk H, Goodman SH (2014) Handbook of thermoset plastics3rd edn. William Andrew, San Diego

    Google Scholar 

  2. Bowman CN, Kloxin CJ (2012) Covalent adaptable networks: reversible bond structures incorporated in polymer networks. Angew Chem Int Ed 51:4272–4274

    CAS  Google Scholar 

  3. Urdl K, Kandelbauer A, Kern W, Müller U, Thebault M, Zikulnig-Rusch E (2017) Self-healing of densely crosslinked thermoset polymers—a critical review. Prog Org Coat 104:232–249

    CAS  Google Scholar 

  4. Chen X, Dam MA, Ono K, Mal A, Shen H, Nutt SR, Sheran K, Wudl F (2002) A thermally re-mendable cross-linked polymeric material. Science 295:1698–1702

    CAS  PubMed  Google Scholar 

  5. Liu YL, Chuo TW (2013) Self-healing polymers based on thermally reversible Diels–Alder chemistry. Polym Chem 4:2194–2205

    CAS  Google Scholar 

  6. Liu YL, Hsieh CY (2006) Crosslinked epoxy materials exhibiting thermal remendablility and removability from multifunctional maleimide and furan compounds. J Polym Sci Part A Polym Chem 44:905–903

    CAS  Google Scholar 

  7. Tian Q, Yuan YC, Rong MZ, Zhang MQ (2009) A thermally remendable epoxy resin. J Mater Chem 19:1289–1296

    CAS  Google Scholar 

  8. Peterson AM, Jensen RE, Palmese GR (2010) Room-temperature healing of a thermosetting polymer using the Diels-Alder reaction. ACS Appl Mater Interfaces 2:1141–1149

    CAS  PubMed  Google Scholar 

  9. Bai N, Simon GP, Saito K (2013) Investigation of the thermal self-healing mechanism in a cross-linked epoxy system. RSC Adv 3:20699–20707

    CAS  Google Scholar 

  10. Bai N, Simon GP, Saito K (2013) Synthesis of a diamine cross-linker containing Diels-Alder adducts to produce self-healing thermosetting epoxy polymer from a widely used epoxy monomer. Polym Chem 4:724–730

    CAS  Google Scholar 

  11. Pratama PA, Sharifi M, Peterson AM, Palmese GR (2013) Room temperature self-healing thermoset based on the Diels−Alder reaction. ACS Appl Mater Interfaces 5:12425–12431

    CAS  PubMed  Google Scholar 

  12. Fan M, Liu J, Li X, Zhang J, Cheng J (2014) Recyclable Diels−Alder furan/maleimide polymer networks with shape memory effect. Ind Eng Chem Res 53:16156–16163

    CAS  Google Scholar 

  13. Bai N, Simon GP, Saito K (2013) Characterisation of the thermal self-healing of a high crosslink density epoxy thermoset. New J Chem 39:497–3506

    Google Scholar 

  14. Kuang X, Liu G, Dong X, Liu X, Xu J, Wang D (2015) Facile fabrication of fast recyclable and multiple self-healing epoxy materials through Diels-Alder adduct cross-linker. J Polym Sci Part A Polym Chem 53:2094–2103

    CAS  Google Scholar 

  15. Amendola E, Iacono SD, Pastore A, Curcio M, Giordano M, Iadonisi A (2015) Epoxy thermosets with self-healing ability. J Mater Sci Chem Eng 3:162–167

    CAS  Google Scholar 

  16. Turkenburg DH, Fischer HR (2015) Diels-Alder based, thermo-reversible cross-linked epoxies for use in self-healing composites. Polymer 79:187–194

    CAS  Google Scholar 

  17. Fang F, Chen J, Zou Y, Xu Z, Lu C (2017) Thermally-induced self-healing behaviors and properties of four epoxy coatings with different network architectures. Polymers 9:333

    PubMed Central  Google Scholar 

  18. Iacono SD, Martone A, Pastore A, Filippone G, Acierno D, Zarrelli M, Giordano M, Amendola E (2017) Thermally activated multiple self-healing Diels-Alder epoxy system. Polym Eng Sci 57:674–679

    Google Scholar 

  19. Karami Z, Zohuriaan-Mehr MJ, Rostami A (2018) Biobased Diels-Alder engineered network from furfuryl alcohol and epoxy resin: preparation and mechano-physical characteristics. ChemistrySelect 3:40–46

    CAS  Google Scholar 

  20. Oh CR, Lee DI, Park JH, Lee DS (2019) Thermally healable and recyclable graphene-nanoplate/epoxy composites via an in-situ Diels-Alder reaction on the graphene-nanoplate surface. Polymers 11:1057

    PubMed Central  Google Scholar 

  21. Du G, Mao A, Yu J, Hou J, Zhao N, Han J, Zhao Q, Gao W, Xie T, Bai H (2019) Nacre-mimetic composite with intrinsic self-healing and shape-programming capability. Nat Commun 10:800

    PubMed  PubMed Central  Google Scholar 

  22. Handique J, Dolui SK (2019) A thermally remendable multiwalled carbon nanotube/epoxy composites via Diels-Alder bonding. J Polym Res 26:163

    Google Scholar 

  23. Du P, Liu X, Zheng Z, Wang X, Joncheray T, Zhang Y (2013) Synthesis and characterization of linear self-healing polyurethane based on thermally reversible Diels–Alder reaction. RSC Avd 3:15475–15482

    CAS  Google Scholar 

  24. Mallek H, Jegat C, Mignard N, Taha M, Abid M, Abid S (2013) One-step synthesis of PCL-urethane networks using a crosslinking/de-crosslinking agent. J Macromol Sci Part A Pure Appl Chem 50:728–737

    CAS  Google Scholar 

  25. Rivera G, Nguyen LT, Hillewaere XKD, Prez FED (2014) One-pot thermo-remendable shape memory polyurethanes. Macromolecules 47:2010–2018

    Google Scholar 

  26. Du P, Wu M, Liu X, Zheng Z, Wang X, Joncheray T, Zhang Y (2014) Diels–Alder-based crosslinked self-healing polyurethane/urea from polymeric methylene diphenyl diisocyanate. J Appl Polym Sci 131:40234

    Google Scholar 

  27. Agar S, Durmaz H, Gunay US, Hizal G, Tunca U (2015) Polymer grafting onto polyurethane backbone via Diels–Alder reaction. J Polym Sci Part A Polym Chem 53:521–527

    CAS  Google Scholar 

  28. Lakatos C, Czifrák K, Papp R, Karger-Kocsis J, Zsuga M, Kéki S (2016) Segmented linear shape memory polyurethanes with thermoreversible Diels-Alder coupling: effects of polycaprolactone molecular weight and diisocyanate type. Express Polym Lett 10:324–336

    CAS  Google Scholar 

  29. Pyo K, Lee DH, Kim Y, Kim JW (2016) Extremely rapid and simple healing of a transparent conductor based on Ag nanowires and polyurethane with a Diels–Alder network. J Mater Chem C 4:972–977

    CAS  Google Scholar 

  30. Zhao J, Xu R, Luo G, Wu J, Xia H (2016) Self-healing poly(siloxane-urethane) elastomers with remoldability, shape memory and biocompatibility. Polym Chem 7:7278–7286

    CAS  Google Scholar 

  31. Wei Y, Ma X (2017) The self-healing cross-linked polyurethane by Diels-Alder polymerization. Adv Polym Technol 37:1987–1993

    Google Scholar 

  32. Feng L, Yu Z, Bian Y, Lu J, Shi X, Chai C (2017) Self-healing behavior of polyurethanes based on dual actions of thermo-reversible Diels-Alder reaction and thermal movement of molecular chains. Polymer 124:48–59

    CAS  Google Scholar 

  33. Willocq B, Khelifa F, Brancart J, Assche GV, Dubois P, Raquez JM (2017) One-component Diels–Alder based polyurethanes: a unique way to self-heal. RSC Adv 7:48047–48053

    CAS  Google Scholar 

  34. Wei Y, Du X, Ma X, Zhao K, Zhang S, Bai Y (2017) Synthesis and self-healing property of polyurethane modified with three-furyl diol. Polym Bull 74:3907–3922

    CAS  Google Scholar 

  35. Li M, Zhang R, Li X, Wu Q, Chen T, Sun P (2018) High-performance recyclable cross-linked polyurethane with orthogonal dynamic bonds: the molecular design, microstructures, and macroscopic properties. Polymer 148:127–137

    CAS  Google Scholar 

  36. Peng YJ, He X, Wu Q, Sun PC, Wang CJ, Liu XZ (2018) A new recyclable crosslinked polymer combined polyurethane and epoxy resin. Polymer 149:154–163

    CAS  Google Scholar 

  37. Yang L, Lu X, Wang Z, Xia H (2018) Diels–Alder dynamic crosslinked polyurethane/polydopamine composites with NIR triggered self-healing function. Polym Chem 9:2166–2172

    CAS  Google Scholar 

  38. Menon AV, Madras G, Bose S (2018) Ultrafast self-healable interfaces in polyurethane nanocomposites designed using Diels−Alder “click” as an efficient microwave absorber. ACS Omega 3:1137–1146

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lin C, Sheng D, Liu X, Xu S, Ji F, Dong L, Zhou Y, Yang Y (2019) Effect of different sizes of graphene on Diels-Alder self-healing polyurethane. Polymer 182:121822

    Google Scholar 

  40. Wang Z, Yang H, Fairbanks BD, Liang H, Ke J, Zhu C (2019) Fast self-healing engineered by UV-curable polyurethane contained Diels-Alder structure. Prog Org Coat 131:131–136

    CAS  Google Scholar 

  41. Wang Z, Liang H, Yang H, Xiong L, Zhou J, Huang S, Zhao C, Zhong J, Fan X (2019) UV-curable self-healing polyurethane coating based on thiol-ene and Diels-Alder double click reactions. Prog Org Coat 137:105282

    CAS  Google Scholar 

  42. Stenzenberger HD (1994) In: Hergenrother PM (ed) High performance polymers (Adavances in polymer science, Vol.117) Springer, Berlin

  43. Stenzenberger H (1988) Recent advances in thermosetting polyimides. Br Polym J 20:383–396

    CAS  Google Scholar 

  44. Canning MS, Stenzenberger H (1986) Compimide bismaleimide resins – high performance thermosetting systems. Mater Des 7:207–211

    Google Scholar 

  45. Reghunadhan Nair CP (2004) Advances in addition-cure phenolic resins. Prog Polym Sci 29:401–498

    Google Scholar 

  46. Hopewell JL, George GA, Hill DJT (2000) Quantitative analysis of bismaleimide-diamine thermosets using near infrared spectroscopy. Polymer 41:8221–8229

    CAS  Google Scholar 

  47. Morgan RJ, Shin EE, Rosenberg B, Jurek A (1997) Characterization of the cure reactions of bismaleimide composite matrices. Polymer 38:639–646

    CAS  Google Scholar 

  48. Sugane K, Takagi R, Shibata M (2018) Thermally healable/heat-resistant properties of thersets bearing dynamic and thermally stable bonds formed by the Diels-Alder and thiol-maleimide “click” reactions. React Funct Polym 131:211–218

    CAS  Google Scholar 

  49. Chen K, Cole RB, Cruz VS, Blakeney EW, Kanz MF, Dugas TR (2008) Characterization of biliary conjugates of 4,4'-methylenedianiline in male versus female rats. Toxicol Appl Pharmacol 232:190–202

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Naozumi Teramoto of our department for his helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiro Shibata.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 632 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasuda, K., Sugane, K. & Shibata, M. Self-healing high-performance thermosets utilizing the furan/maleimide Diels-Alder and amine/maleimide Michael reactions. J Polym Res 27, 18 (2020). https://doi.org/10.1007/s10965-019-1986-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1986-z

Keywords

Navigation