Skip to main content
Log in

Strong Uniqueness for Stochastic Evolution Equations with Unbounded Measurable Drift Term

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We consider stochastic evolution equations in Hilbert spaces with merely measurable and locally bounded drift term \(B\) and cylindrical Wiener noise. We prove pathwise (hence strong) uniqueness in the class of global solutions. This paper extends our previous paper (Da Prato et al. in Ann Probab 41:3306–3344, 2013) which generalized Veretennikov’s fundamental result to infinite dimensions assuming boundedness of the drift term. As in Da Prato et al. (Ann Probab 41:3306–3344, 2013), pathwise uniqueness holds for a large class, but not for every initial condition. We also include an application of our result to prove existence of strong solutions when the drift \(B\) is assumed only to be measurable and bounded and grow more than linearly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio, S., Brzezniak, Z., Wu, J.F.: Existence of global solutions and invariant measures for stochastic differential equations driven by Poisson type noise with non-Lipschitz coefficients. J. Math. Anal. Appl. 371, 309–322 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chojnowska-Michalik, A., Goldys, B.: Generalized Ornstein–Uhlenbeck semigroups: Littlewood–Paley–Stein inequalities and the P. A. Meyer equivalence of norms. J. Funct. Anal. 182, 243–279 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chojnowska-Michalik, A., Goldys, B.: Symmetric Ornstein–Uhlenbeck semigroups and their generator. Probab. Theory Relat. Fields 124, 459–486 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Da Prato, G.: Kolmogorov Equations for Stochastic PDEs. Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser, Basel (2004)

    Book  Google Scholar 

  5. Da Prato, G., Flandoli, F., Priola, E., Röckner, M.: Strong uniqueness for stochastic evolution equations in Hilbert spaces perturbed by a bounded measurable drift. Ann. Probab. 41, 3306–3344 (2013). doi:10.1214/12-AOP763

    Article  MATH  MathSciNet  Google Scholar 

  6. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, vol. 44. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  7. Da Prato, G., Zabczyk, J.: Second Order Partial Differential Equations in Hilbert Spaces, London Math. Soc. Lecture Note Ser. Cambridge University Press, Cambridge (2002)

  8. Da Prato, G., Flandoli, F.: Pathwise uniqueness for a class of SDEs in Hilbert spaces and applications. J. Funct. Anal. 259, 243–267 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fedrizzi, E.: Thesis, Pisa (2009)

  10. Fedrizzi, E., Flandoli, F.: Pathwise uniqueness and continuous dependence for SDEs with nonregular drift. Stochastics 83, 241–257 (2011)

    MATH  MathSciNet  Google Scholar 

  11. Ferrario, B.: Uniqueness and absolute continuity for semilinear SPDEs. In: Proceedings of Seminar on Stochastic Analysis, Random Fields and Applications-VII, Ascona, Birkhäuser (2011)

  12. Flandoli, F.: Random Perturbation of PDEs and Fluid Dynamic Models, Lecture Notes in Mathematics, vol. 2015. Springer, Berlin (2011)

  13. Flandoli, F., Gubinelli, M., Priola, E.: Well-posedness of the transport equation by stochastic perturbation. Invent. Math. 180, 1–53 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gatarek, D., Goldys, B.: On solving stochastic evolution equations by the change of drift with application to optimal control. Stochastic partial differential equations and applications (Trento, 1990), pp. 180–190, Pitman Res. Notes Math. Ser., 268, Longman Sci. Tech., Harlow (1992)

  15. Gyöngy, I., Krylov, N.V.: Existence of strong solutions for Itô’s stochastic equations via approximations. Probab. Theory Relat. Fields 105, 143–158 (1996)

    Article  MATH  Google Scholar 

  16. Gyöngy, I., Martínez, T.: On stochastic differential equations with locally unbounded drift. Czechoslovak Math. J. 51(126), 763–783 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Krylov, N.V., Röckner, M.: Strong solutions to stochastic equations with singular time dependent drift. Probab. Theory Relat. Fields 131, 154–196 (2005)

    Article  MATH  Google Scholar 

  18. Liu, W., Röckner, M.: Introduction to Stochastic Partial Differential Equations (in preparation)

  19. Ma, Z.M., Röckner, M.: Introduction to the Theory of (Nonsymmetric) Dirichlet Forms, Universitext. Springer, Berlin (1992)

    Book  Google Scholar 

  20. Maas, J., van Neerven, J.M.A.M.: Gradient estimates and domain identification for analytic Ornstein–Uhlenbeck operators. Nonlinear Parabolic Problems: Herbert Amann Festschrift Progress in Nonlinear Differential Equations and Their Applications, vol. 60, pp. 463–477. Birkhäuser (2011)

  21. Ondreját, M.: Uniqueness for Stochastic Evolution Equations in Banach Spaces. Dissertationes Math. (Rozprawy Mat.), vol. 426 (2004)

  22. Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, vol. 1905. Springer, Berlin (2007)

  23. Priola, E.: Pathwise uniqueness for singular SDEs driven by stable processes. Osaka J. Math. 49, 421–447 (2012)

    MATH  MathSciNet  Google Scholar 

  24. Schmuland, B.: Dirichlet forms with polynomial domain. Math. Japon. 37, 1015–1024 (1992)

    MATH  MathSciNet  Google Scholar 

  25. Tanaka, H., Tsuchiya, M., Watanabe, S.: Perturbation of drift-type for Lévy processes. J. Math. Kyoto Univ. 14, 73–92 (1974)

    MATH  MathSciNet  Google Scholar 

  26. Veretennikov, A.J.: Strong solutions and explicit formulas for solutions of stochastic integral equations. Mat. Sb. (N.S.) 153(3), 434–452 (1980)

    MathSciNet  Google Scholar 

  27. Zhang, X.: Strong solutions of SDES with singular drift and Sobolev diffusion coefficients. Stoch. Process. Appl. 115, 1805–1818 (2005)

    Article  MATH  Google Scholar 

  28. Zvonkin, A.K.: A transformation of the phase space of a diffusion process that removes the drif. Mat. Sb. (N.S.) 93(135), 129–149 (1974)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referees for their useful remarks and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Priola.

Additional information

M. Röckner’s research was supported by the DFG through IRTG 1132 and CRC 701 and the I. Newton Institute, Cambridge, UK.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Da Prato, G., Flandoli, F., Priola, E. et al. Strong Uniqueness for Stochastic Evolution Equations with Unbounded Measurable Drift Term. J Theor Probab 28, 1571–1600 (2015). https://doi.org/10.1007/s10959-014-0545-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-014-0545-0

Keywords

Mathematics Subject Classification (2010)

Navigation