Skip to main content
Log in

Ornstein–Uhlenbeck processes with singular drifts: integral estimates and Girsanov densities

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We consider a perturbation of a Hilbert space-valued Ornstein–Uhlenbeck process by a class of singular nonlinear non-autonomous maximal monotone time-dependent drifts. The only further assumption on the drift is that it is bounded on balls in the Hilbert space uniformly in time. First we introduce a new notion of generalized solutions for such equations which we call pseudo-weak solutions and prove that they always exist and obtain pathwise estimates in terms of the data of the equation. Then we prove that their laws are absolutely continuous with respect to the law of the original Ornstein–Uhlenbeck process. In particular, we show that pseudo-weak solutions always have continuous sample paths. In addition, we obtain integrability estimates of the associated Girsanov densities. Some of our results concern non-random equations as well, while probabilistic results are new even in finite-dimensional autonomous settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio, S., Röckner, M.: Dirichlet forms, quantum fields and stochastic quantisation. Technical report, BiBoS (1988)

  2. Albeverio, S., Høegh-Krohn, R.: Some remarks on Dirichlet forms and their applications to quantum mechanics and statistical mechanics. In: Functional Analysis in Markov Processes (Katata/Kyoto, 1981), Lecture Notes in Mathematics, vol. 923. Springer, Berlin, pp. 120–132 (1982)

  3. Albeverio, S., Röckner, M.: Classical Dirichlet forms on topological vector spaces—closability and a Cameron–Martin formula. J. Funct. Anal. 88(2), 395–436 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barbu, V.: Nonlinear semigroups and differential equations in Banach spaces. Editura Academiei Republicii Socialiste România, Bucharest (1976). Translated from the Romanian

  5. Barbu, V.: Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer Monographs in Mathematics. Springer, New York (2010)

    Book  Google Scholar 

  6. Baudoin, F., Feng, Q., Gordina, M.: Integration by parts and quasi-invariance for the horizontal Wiener measure on foliated compact manifolds. J. Funct. Anal. 277(5), 1362–1422 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baudoin, F., Gordina, M., Melcher, T.: Quasi-invariance for heat kernel measures on sub-Riemannian infinite-dimensional Heisenberg groups. Trans. Am. Math. Soc. 365(8), 4313–4350 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bogachev, V.I., Da Prato, G., Röckner, M.: Regularity of invariant measures for a class of perturbed Ornstein–Uhlenbeck operators. NoDEA Nonlinear Differ. Equ. Appl. 3(2), 261–268 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York (1973), North-Holland Mathematics Studies, No. 5. Notas de Matemática (50)

  10. Brezis, H.: Functional Analysis. Universitext, Springer, New York, Sobolev spaces and partial differential equations (2011)

  11. Browder, F.E.: Nonlinear accretive operators in Banach spaces. Bull. Am. Math. Soc. 73, 470–476 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cerrai, S.: Second Order PDE’s in Finite and Infinite Dimension. Lecture Notes in Mathematics, vol. 1762. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  13. Da Prato, G., Kwapień, S., Zabczyk, J.: Regularity of solutions of linear stochastic equations in Hilbert spaces. Stochastics 23(1), 1–23 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Da Prato, G.: Kolmogorov equations for stochastic PDEs. In: Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel (2004)

  15. Da Prato, G., Röckner, M.: Singular dissipative stochastic equations in Hilbert spaces. Probab. Theory Relat. Fields 124(2), 261–303 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Da Prato, G., Röckner, M., Wang, F.-Y.: Singular stochastic equations on Hilbert spaces: Harnack inequalities for their transition semigroups. J. Funct. Anal. 257(4), 992–1017 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Da Prato, G., Zabczyk, J.: Nonexplosion, boundedness, and ergodicity for stochastic semilinear equations. J. Differ. Equ. 98(1), 181–195 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Da Prato, G., Zabczyk, J.: Stochastic equations in infinite dimensions. In: Encyclopedia of Mathematics and its Applications, 2nd edn, vol. 152. Cambridge University Press, Cambridge (2014)

  19. Dragomir, S.S.: Some Gronwall Type Inequalities and Applications. Nova Science Publishers Inc, Hauppauge (2003)

    MATH  Google Scholar 

  20. Driver, B.K., Gordina, M.: Heat kernel analysis on infinite-dimensional Heisenberg groups. J. Funct. Anal. 255(9), 2395–2461 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Driver, B.K., Gordina, M.: Integrated Harnack inequalities on Lie groups. J. Differ. Geom. 83(3), 501–550 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Engel, K.-J., Nagel, R.: One-parameter semigroups for linear evolution equations. In: Graduate Texts in Mathematics, vol. 194. Springer, New York (2000), with contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt

  23. Fernique, X.: Regularité des trajectoires des fonctions aléatoires gaussiennes. Lecture Notes in Mathematics, vol. 480, pp. 1–96 (1975)

  24. Ga̧tarek, D., Gołdys, B.: On solving stochastic evolution equations by the change of drift with application to optimal control. In: Stochastic partial differential equations and applications (Trento, 1990), Pitman Research Notes in Mathematics Series, vol. 268, Longman Sci. Tech., Harlow, pp. 180–190 (1992)

  25. Ga̧tarek, D., Gołdys, B.: On invariant measures for diffusions on Banach spaces. Potential Anal. 7(2), 539–553 (1997)

  26. Gordina, M.: An Application of a Functional Inequality to Quasi-Invariance in Infinite Dimensions, pp. 251–266. Springer, New York (2017)

    MATH  Google Scholar 

  27. Gordina, M., Röckner, M., Wang, F.-Y.: Dimension-independent Harnack inequalities for subordinated semigroups. Potential Anal. 34(3), 293–307 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kato, T.: Nonlinear semigroups and evolution equations. J. Math. Soc. Jpn. 19, 508–520 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kōmura, Y.: Nonlinear semi-groups in Hilbert space. J. Math. Soc. Jpn. 19, 493–507 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  30. Krylov, N.V.: A simple proof of the existence of a solution to the Itô equation with monotone coefficients. Teor. Veroyatnost. i Primenen. 35(3), 576–580 (1990)

    MathSciNet  MATH  Google Scholar 

  31. Krylov, N.V.: Introduction to the theory of diffusion processes. Translations of Mathematical Monographs, vol. 142. American Mathematical Society, Providence (1995). Translated from the Russian manuscript by Valim Khidekel and Gennady Pasechnik

  32. Krylov, N.V.: A few comments on a result of A. Novikov and Girsanov’s theorem. Stochastics 91(8), 1186–1189 (2019)

    Article  MathSciNet  Google Scholar 

  33. Kuo, H.H.: Gaussian Measures in Banach Spaces. Lecture Notes in Mathematics, vol. 463. Springer, Berlin (1975)

    Book  Google Scholar 

  34. Liu, W., Röckner, M.: Stochastic Partial Differential Equations: An Introduction. Universitext. Springer, Cham (2015)

    Book  MATH  Google Scholar 

  35. Melcher, T.: Heat kernel analysis on semi-infinite Lie groups. J. Funct. Anal. 257(11), 3552–3592 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Métivier, M.: Semimartingales, de Gruyter Studies in Mathematics, vol. 2. Walter de Gruyter & Co., Berlin (1982), A course on stochastic processes

  37. Ondreját, M.: Uniqueness for stochastic evolution equations in Banach spaces. Diss. Math. (Rozprawy Mat.) 426, 63 (2004)

    MathSciNet  MATH  Google Scholar 

  38. Parthasarathy, K.R.: Probability Measures on Metric Spaces. AMS Chelsea Publishing, Providence (2005), Reprint of the 1967 original

  39. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983)

    MATH  Google Scholar 

  40. Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75–88 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  41. Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton (1970)

  42. Röckner, M., Wang, F.-Y.: General extinction results for stochastic partial differential equations and applications. J. Lond. Math. Soc. (2) 87(2), 545–560 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Stannat, W.: (Nonsymmetric) Dirichlet operators on \(L^1\): existence, uniqueness and associated Markov processes. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28(1), 99–140 (1999)

    MathSciNet  MATH  Google Scholar 

  44. Stannat, W.: The theory of generalized Dirichlet forms and its applications in analysis and stochastics. Mem. Am. Math. Soc. 142(678), viii+101 (1999)

  45. Wiesinger, S.: Uniqueness of solutions to Fokker–Planck equations related to singular SPDE driven by Lévy and cylindrical Wiener noise. Ph.D. thesis, University of Bielefeld (2011)

Download references

Acknowledgements

The authors thank G. Da Prato, M. Hairer, M. Hinz and N. Krylov for helpful discussions and suggestions. The authors are grateful to anonymous referees for corrections and suggested improvements to the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Gordina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

M. Gordina: Research was supported in part by NSF Grant DMS-1712427, and a Simons Fellowship. M. Röckner: Research was supported in part by the German Science Foundation (DFG) through CRC 1283. A. Teplyaev: Research was supported in part by NSF Grant DMS-1613025.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordina, M., Röckner, M. & Teplyaev, A. Ornstein–Uhlenbeck processes with singular drifts: integral estimates and Girsanov densities. Probab. Theory Relat. Fields 178, 861–891 (2020). https://doi.org/10.1007/s00440-020-00991-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-020-00991-w

Keywords

Mathematics Subject Classification

Navigation