Skip to main content
Log in

Unbounded Trace Orbits of Thue–Morse Hamiltonian

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

It is well known that, an energy is in the spectrum of Fibonacci Hamiltonian if and only if the corresponding trace orbit is bounded. However, it is not known whether the same result holds for the Thue–Morse Hamiltonian. In this paper, we give a negative answer to this question. More precisely, we construct two subsets \(\Sigma _{II}\) and \(\Sigma _{III}\) of the spectrum of the Thue–Morse Hamiltonian, both of which are dense and uncountable, such that each energy in \(\Sigma _{II}\cup \Sigma _{III}\) corresponds to an unbounded trace orbit. Exact estimates on the norm of the transfer matrices are also obtained for these energies: for \(E\in \Sigma _{II}\cup \Sigma _{III}, \) the norms of the transfer matrices behave like

$$\begin{aligned} e^{c_1\gamma \sqrt{n}}\le \Vert T_{ n}(E)\Vert \le e^{c_2\gamma \sqrt{n}}. \end{aligned}$$

However, two types of energies are quite different in the sense that each energy in \(\Sigma _{II}\) is associated with a two-sided pseudo-localized state, while each energy in \(\Sigma _{III}\) is associated with a one-sided pseudo-localized state. The difference is also reflected by the local dimensions of the spectral measure: the local dimension is 0 for energies in \(\Sigma _{II}\) and is larger than 1 for energies in \(\Sigma _{III}.\) As a comparison, we mention another known countable dense subset \(\Sigma _I\). Each energy in \(\Sigma _I\) corresponds to an eventually constant trace map and the associated eigenvector is an extended state. In summary, the Thue–Morse Hamiltonian exhibits “mixed spectral nature”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. In this paper, we use \(\lhd \) and \(\rhd \) to indicate the beginning and the end, respectively, of the proof of a Claim.

References

  1. Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109(5), 1492–1505 (1958)

    Article  ADS  Google Scholar 

  2. Aubry, S., André, G.: Analyticity breaking and Anderson localization in incommensurate lattices. Ann. Isr. Phys. Soc. 3, 133–164 (1980)

    MathSciNet  MATH  Google Scholar 

  3. Avila, A.: On the spectrum and Lyapunov exponent of limit periodic Schrödinger operators. Commun. Math. Phys. 288(3), 907–918 (2009)

    Article  ADS  MATH  Google Scholar 

  4. Axel, F., Allouche, J.P., Kleman, M., Mendes-France, M., Peyriere, J.: Vibrational modes in a one-dimensional “quasi alloy”, the Morse case. J. Phys. C3(47), 181–187 (1986)

  5. Axel, F., Peyrière, J.: Extended states in a chain with controlled disorder. C. R. Acad. Sci. Paris Sr. II Mc. Phys. Chim. Sci. Univers Sci. Terre 306, 179–182 (1988)

  6. Axel, F., Peyrière, J.: Spectrum and extended states in a harmonic chain with controlled disorder: effects of the Thue–Morse symmetry. J. Stat. Phys. 57, 1013–1047 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bellissard, J.: Spectral properties of Schrödinger operator with a Thue–Morse potential. In: Number Theory and Physics (Les Houches, 1989), Springer Proceedings in Physics, vol. 47, pp. 140–150. Springer, Berlin (1990)

  8. Bellissard, J., Bovier, A., Ghez, J.: Discrete Schrödinger operators with potentials generated by substitutions. Differential equations with applications to mathematical physics, pp. 13–23. Mathematics in Science and Engineering, 192. Academic Press, Boston, MA (1993)

  9. Berezanskii, Y.: Expansions in Eigenfunctions of Selfadjoint Operators. Translation of Mathematics Monographs, vol. 17. American Mathematical Society, Providence (1968)

  10. Bourgain, J.: Green’s Function Estimates for Lattice Schrödinger Operators and Applications, Annals of Mathematics Studies, 158. Princeton University Press, Princeton (2005)

    Book  Google Scholar 

  11. Bovier, A., Ghez, J.: Spectral properties of one-dimensional Schröinger operators with potentials generated by substitutions. Commun. Math. Phys. 158, 45–66 (1993)

    Article  ADS  MATH  Google Scholar 

  12. Cantat, S.: Bers and Hénon. Painlevé and Schrödinger. Duke Math. J. 149, 411–460 (2009)

    Article  MATH  Google Scholar 

  13. Carmona, R.: Exponential localization in one-dimensional disordered systems. Duke Math. J. 49(1), 191–213 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Carmona, R., Lacroix, J.: Spectral Theory of Random Schrödinger Operators. Probability and Its Applications. Birkhäuser Boston Inc, Boston (1990)

    Book  MATH  Google Scholar 

  15. Carmona, R., Klein, A., Martinelli, F.: Anderson localization for Bernoulli and other singular potentials. Commun. Math. Phys. 108(1), 41–66 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Damanik, D.: Schrödinger Operators with dynamically defined potentials. Ergod Theory Dyn. Syst. online available on CJO2016. doi:10.1017/etds.2015.120

  17. Damanik, D., Tcheremchantsev, S.: Power-law bounds on transfer matrices and quantum dynamics in one dimension. Commun. Math. Phys. 236, 513–534 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Damanik, D., Killip, R., Lenz, D.: Uniform spectral properties of one-dimensional quasicrystals. III. \(\alpha \)-Continuity. Commun. Math. Phys. 212(1), 191–204 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Damanik, D., Ghez, J.-M., Raymond, L.: A palindromic half-line criterion for absence of eigenvalues and applications to substitution Hamiltonians. Ann. Henri Poincaré 2(5), 927–939 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Damanik, D., Sims, R., Stolz, G.: Localization for one-dimensional continuum Bernoulli–Anderson models. Duke Math. J. 114(1), 59–100 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Damanik, D., Embree, M., Gorodetski, A., Tcheremchantsev, S.: The fractal dimension of the spectrum of the Fibonacci Hamiltonian. Commun. Math. Phys. 280, 499–516 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Damanik, D., Gorodetski, A., Yessen, W.: The Fibonacci Hamiltonian. Invent. Math. 206(3), 629–692 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. del Rio, R., Jitomirskaya, S., Last, Y., Simon, B.: Operators with singular continuous spectrum, IV. Hausdorff dimensions, rank-one perturbations, and localization. J. d’Analyse Math. 69, 153–200 (1996)

  24. Delyon, F., Peyrière, J.: Recurrence of the eigenstates of a Schrödinger operator with automatic potential. J. Stat. Phys. 64(1–2), 363–368 (1991)

    Article  ADS  MATH  Google Scholar 

  25. Falconer, K.: Techniques in Fractal Geometry. Wiley, Hoboken (1997)

    MATH  Google Scholar 

  26. Gilbert, D.J.: On subordinacy and analysis of the spectrum of Schrödinger operators with two singular endpoints. Proc. R. Soc. Edinb. Sect. A 112, 213–229 (1989)

    Article  MATH  Google Scholar 

  27. Gilbert, D.J., Pearson, D.B.: On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators. J. Math. Anal. Appl. 128, 30–56 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Goldsheid, I., Molchanov, S., Pastur, L.: Random homogeneous Schrödinger operator has a pure point spectrum. (Russian) Funkcional. Anal. Appl. 11, 1–10 (1977)

    Google Scholar 

  29. Hof, A., Knill, O., Simon, B.: Singular continuous spectrum for palindromic Schrödinger operators. Commun. Math. Phys. 174(1), 149–159 (1995)

    Article  ADS  MATH  Google Scholar 

  30. Iochum, B., Testard, D.: Power law growth for the resistance in the Fibonacci model. J. Stat. Phys. 65, 715–723 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Iochum, B., Raymond, L., Testard, D.: Resistance of one-dimensional quasicrystals. Physica A 187, 353–368 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  32. Jitomirskaya, S., Last, Y.: Power-law subordinacy and singular spectra. I. Half-line operators. Acta Math. 183(2), 171–189 (1999)

    Article  MATH  Google Scholar 

  33. Jitomirskaya, S., Last, Y.: Power-law subordinacy and singular spectra. II. Line operators. Commun. Math. Phys. 211, 643–658 (2000)

    Article  ADS  MATH  Google Scholar 

  34. Kahn, S., Pearson, D.B.: Subordinacy and spectral theory for infinite matrices. Helv. Phys. Acta 65, 505–527 (1992)

    MathSciNet  Google Scholar 

  35. Kohmoto, M., Kadanoff, L., Tang, C.: Localization problem in one dimension: mapping and escape. Phys. Rev. Lett. 50(23), 1870–1872 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  36. Kotani S.: Ljapunov indices determine absolutely continuous spectra of stationary random one-dimensional Schrödinger operators, Stochastic analysis (Katata/Kyoto, 1982), pp. 225-247, North-Holland Mathematical Library, 32, North-Holland, Amsterdam (1984)

  37. Last, Y., Simon, B.: Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators. Invent. Math. 135, 329–367 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Lenz, D.: Singular spectrum of Lebesgue measure zero for one-dimensional quasicrystals. Commun. Math. Phys. 227, 119–130 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Liu, Q.-H., Qu, Y.-H.: On the Hausdorff dimension of the spectrum of Thue–Morse Hamiltonian. Commun. Math. Phys. 338(2), 867–891 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Liu, Q.-H., Tan, B., Wen, Z.-X., Wu, J.: Measure zero spectrum of a class of Schrödinger operators. J. Stat. Phys. 106, 681–691 (2002)

    Article  MATH  Google Scholar 

  41. Luck, J.M.: Cantor spectra and scaling of gap widths in deterministic aperiodic systems. Phys. Rev. B 39, 5834–5849 (1989)

    Article  ADS  Google Scholar 

  42. Merlin, R., Bajema, K., Nagle, J., Ploog, K.: Raman scattering by acoustic phonons and structural properties of Fibonacci, Thue–Morse and random superlattices. J. Phys. Colloq. 48, C5-503–C5-506 (1987)

  43. Molchanov S.: Structure of the eigenfunctions of one-dimensional unordered structures. Izv. Akad. Nauk SSSR Ser. Mat. (Russian) 42(1), 70–103, 214 (1978)

  44. Newman, M.: Elements of the Topology of Plane Sets of Points. Cambridge University Press, Cambridge (1961)

    Google Scholar 

  45. Ostlund, S., Pandit, R., Rand, D., Schellnhuber, H., Siggia, D.: One-dimensional Schrödinger equation with an almost periodic potential. Phys. Rev. Lett. 50(23), 1873–1876 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  46. Pastur, L.: Spectral properties of disordered systems in the one-body approximation. Commun. Math. Phys. 75(2), 179–196 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Queffélec, M.: Substitution Dynamical Systems-Spectral Analysis. Lecture Notes in Mathematics, vol. 1294. Springer, Berlin (1987)

  48. Rao, H.: Private communication

  49. Riklund, R., Severin, M., Liu, Y.-Y.: The Thue-Morse aperiodic crystal, a link between the Fibonacci quasicrystal and the periodic crystal. Int. J. Mod. Phys. B 1, 121–132 (1987)

    Article  ADS  MATH  Google Scholar 

  50. Shechtman, D., Blech, I., Gratias, D., Cahn, J.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984)

    Article  ADS  Google Scholar 

  51. Simon, B.: Schrödinger semigroups. Bull. AMS 7, 447–526 (1982)

    Article  Google Scholar 

  52. Sütö, A.: the spectrum of a quasiperiodic Schrödinger operator. Commun. Math. Phys. 111(3), 409–415 (1987)

    Article  ADS  MATH  Google Scholar 

  53. Toda, M.: Theory of Nonlinear Lattices. Springer Series in Solid-State Sciences, vol. 20, 2nd edn. Springer, Berlin (1989)

Download references

Acknowledgements

The authors thank Professor Rao Hui and Professor Wen Zhiying for helpful discussions. They also thank the referees for numerous valuable suggestions which clarified some ambiguities in mathematics and greatly improved the exposition. Part of the work was done when the second author visited the Chinese University of Hong Kong in July 2015, he thanks CUHK for their hospitality. Liu was supported by the National Natural Science Foundation of China, Nos. 11371055 and 11571030. Qu was supported by the National Natural Science Foundation of China, Nos. 11371055 and 11431007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhui Qu.

Appendix

Appendix

In this appendix, we give another proof for the fact that the Thue–Morse Hamiltonian has no point spectrum.

Theorem 8.1

([19, 29]) \(H_\lambda \) has no point spectrum.

We begin with the following observation:

Lemma 8.2

If \(E\in \mathbb R\) is such that \(H_\lambda \phi =E\phi \) has a solution \(\phi \) with \(\phi _{\pm n}\rightarrow 0\) when \(n\rightarrow \infty ,\) then E is a type-II energy.

Proof

Since the two-sided Thue–Morse sequence is reflection-symmetric about 1 / 2, there are only two possibilities: either \(\vec {\phi }_0\parallel v_{\pi /4}\) or \(\vec {\phi }_0\parallel v_{-\pi /4}\), as argued in [19]. Without loss of generality, we assume \(\vec {\phi }_0=v_{\pi /4}=(1,-1)^t/\sqrt{2}\). Then we have

$$\begin{aligned} A_{2n}\vec {\phi }_0= (\phi _{2^{2n}+1},\phi _{2^{2n}})^t\rightarrow \vec {0} \end{aligned}$$

when \(n\rightarrow \infty .\) On the other hand, by Remark 2.3, \(A_{2n}\) has the following form( see also [19]):

$$\begin{aligned} A_{2n}= \begin{pmatrix} a_n&{}\quad b_n\\ -b_n&{}\quad c_n \end{pmatrix}. \end{aligned}$$

Thus \(a_n-b_n=\sqrt{2}\phi _{2^{2n}+1}\) and \(-b_n-c_n=\sqrt{2}\phi _{2^{2n}}\). Consequently

$$\begin{aligned} t_{2n}(E)=a_n+c_n=\sqrt{2}(\phi _{2^{2n}+1}-\phi _{2^{2n}})\rightarrow 0. \end{aligned}$$

By the recurrence relation of \(t_n\), we get

$$\begin{aligned} t_{2n+1}(E)=2-\frac{2-t_{2n+2}(E)}{t_{2n}^2(E)}\rightarrow -\infty . \end{aligned}$$

By Lemma 4.6, E is a type-II energy. \(\square \)

Proof of Theorem 8.1

Assume on the contrary that E is an eigenvalue of \(H_\lambda \). Then there exists nonzero \(\phi \in \ell ^2(\mathbb Z)\) such that \(H_\lambda \phi =E\phi .\) Then by the above lemma, E is a type-II enenrgy. However this will contradict with Theorem 1.5, since by that theorem, no \(\ell ^2\) solution is possible for \(E\in \Sigma _{II}.\) \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Qu, Y. & Yao, X. Unbounded Trace Orbits of Thue–Morse Hamiltonian. J Stat Phys 166, 1509–1557 (2017). https://doi.org/10.1007/s10955-017-1726-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1726-x

Keywords

Navigation