Skip to main content
Log in

Power law growth for the resistance in the Fibonacci model

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Many one-dimensional quasiperiodic systems based on the Fibonacci rule, such as the tight-binding HamiltonianHψ(n)=ψ(n+1)+ψ(n−1)+λv(n) ψ(n),nεℤ,ψεl 2(ℤ),λεℝ, wherev(n)=[(n+1)α]−[],[x] denoting the integer part ofx and α the golden mean\((\sqrt 5 --1)/2\), give rise to the same recursion relation for the transfer matrices. It is proved that the wave functions and the norm of transfer matrices are polynomially bounded (critical regime) if and only if the energy is in the spectrum of the Hamiltonian. This solves a conjecture of Kohmoto and Sutherland on the power-law growth of the resistance in a one-dimensional quasicrystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Avishai and D. Berend, Transmission through a Fibonacci lattice, Preprint (1990).

  2. J. M. Berezanskii, Expansions in eigenfunctions of selfadjoint operators,Translations Am. Math. Soc. 17 (1968).

  3. J. Bellissard, B. Iochum, E. Scoppola, and D. Testard, Spectral theory of one dimensional quasi-crystal,Commun. Math. Phys. 125:527–543 (1989).

    Google Scholar 

  4. J. Bellissard, B. Iochum, and D. Testard, Continuity properties of the electronic spectrum of 1D quasicrystals,Commun. Math. Phys., to appear.

  5. M. Casdagli, Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation,Commun. Math. Phys. 107:295–318 (1986).

    Google Scholar 

  6. G. Gumbs and M. K. Ali, Scaling and eigenstates for a class of one dimensional quasiperiodic lattices,J. Phys. A 21:L517–L521 (1988).

    Google Scholar 

  7. G. Gumbs and M. K. Ali, Dynamical maps, Cantor spectra, and localization for Fibonacci and related quasiperiodic lattices,Phys. Rev. Lett. 60:1081–1084 (1988).

    Google Scholar 

  8. M. Holtzer, Three classes of one-dimensional, two-tile Penrose tilings and the Fibonacci Kronig-Penney model as a generic case,Phys. Rev. B 38:1709–1720 (1988).

    Google Scholar 

  9. M. Holtzer, Nonlinear dynamics of localization in a class of one-dimensional quasicrystals,Phys. Rev. B 38:5756–5759 (1988).

    Google Scholar 

  10. C. Janot and J. M. Dubois,Quasicrystalline Materials (World Scientific, Singapore, 1988).

    Google Scholar 

  11. M. Kohmoto, Metal-insulator transition and scaling for incommensurate system,Phys. Rev. Lett. 51:1198–1201 (1983).

    Google Scholar 

  12. M. Kohmoto and J. R. Banavar, Quasi periodic lattice: Electronic properties, phonon properties and diffusion,Phys. B 34:563–566 (1986).

    Google Scholar 

  13. P. A. Kalugin, A. Y. Kitaev, and L. S. Levitov, Electron spectrum of a one-dimensional quasicrystal,Sov. Phys. JETP 64:410–415 (1986).

    Google Scholar 

  14. M. Kohmoto, L. P. Kadanoff, and C. Tang, Localization problem in one dimension: Mapping and-escape,Phys. Rev. Lett. 50:1870–1873 (1983).

    Google Scholar 

  15. J. Kollar and A. Sütő, The Kronig-Penney model in a Fibonacci lattice,Phys. Lett. A 117:203–209 (1986).

    Google Scholar 

  16. M. Kohmoto, B. Sutherland, and K. Iguchi, Localization in optics: Quasi-periodic media,Phys. Rev. Lett. 58:2436–2438 (1987).

    Google Scholar 

  17. M. Kohmoto, B. Sutherland, and C. Tang, Critical wave functions and a Cantor-set spectrum of a one dimensional quasicrystal model,Phys. Rev. B 35:1020–1033 (1987).

    Google Scholar 

  18. L. S. Levitov, Renormalization group for a quasi-periodic Schrödinger operator,J. Phys. 50:707–716 (1989).

    Google Scholar 

  19. A. H. Mac Donald, Fibonacci superlattices, inInterfaces, Quantum Wells and Superlattices, R. Leavers and R. Taylor, eds. (Plenum Press, New York, 1988).

    Google Scholar 

  20. A. H. MacDonald and G. C. Aers, Continuum-model acoustic and electronic properties for a Fibonacci superlattice,Phys. Rev. B 36:9142–9145 (1987).

    Google Scholar 

  21. A. Mookerjee and V. A. Singh, Nature of the eigenstates on a Fibonacci chain,Phys. Rev. B 34:7433–7435 (1986).

    Google Scholar 

  22. H.-R. Ma and C.-H. Tsai, Interface polarisation modes in semiconductor quasiperiodic lattices,Phys. Rev. B 35:9295–9297 (1987).

    Google Scholar 

  23. F. Nori and J. P. Rodriguez, Acoustic and electric properties of one-dimensional quasicrystals,Phys. Rev. B 34:2207–2211 (1986).

    Google Scholar 

  24. T. Odagami and H. Aoyama, Self-similarities in one dimensional periodic and quasiperiodic systems,Phys. Rev. B 39:475–487 (1989).

    Google Scholar 

  25. T. Odagami and H. Aoyama, Hyperinflation in periodic and quasiperiodic chains,Phys. Rev. Lett. 61:775–778 (1988).

    Google Scholar 

  26. S. Ostlund and S.-H. Kim, Renormalization of quasi-periodic mappings,Physica Scripta 9:193–198 (1985).

    Google Scholar 

  27. S. Ostlund and R. Prandit, Renormalization-group analysis of the discrete quasiperiodic Schrödinger equation,Phys. Rev. B 29:1394–1414 (1984).

    Google Scholar 

  28. S. Ostlund, R. Prandit, R. Rand, H. J. Schnellnhuber, and E. D. Siggia, One dimensional Schrödinger equation with an almost periodic potential,Phys. Rev. Lett. 50:1873–1877 (1983).

    Google Scholar 

  29. A. Sütő, The spectrum of a quasi-periodic Schrödinger operator,Commun. Math. Phys. 111:409–415 (1987).

    Google Scholar 

  30. A. Sütő, Singular continuous spectrum on a Cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian,J. Stat. Phys. 56:525–531 (1989).

    Google Scholar 

  31. D. S. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Metallic phase with long-range orientational order and no translational symmetry,Phys. Rev. Lett. 53:1951–1953 (1984).

    Google Scholar 

  32. B. Sutherland and M. Kohmoto, Resistance of a one dimensional quasicrystal, power law growth,Phys. Rev. B 36:5877–5886 (1987).

    Google Scholar 

  33. C. Sire and M. Mosseri, Spectrum of 1D quasicrystals near the periodic chain,J. Phys. (Paris)50:3447–3461 (1989).

    Google Scholar 

  34. P. J. Steinhardt and S. Ostlund,The Physics of Quasicrystals (World Scientific, Singapore, 1987).

    Google Scholar 

  35. J. A. Vergés, L. Brey, E. Lewis, and C. Tejedor, Localization m a one-dimensional quasiperiodic Hamiltonian with off-diagonal disorder,Phys. Rev. B 35:5270–5272 (1987).

    Google Scholar 

  36. F. Wijnands, Energy spectra for one-dimensional quasi-periodic potentials: Bandwith, scaling, mapping and relation with local isomorphism,J. Phys. A 22:3267–3282 (1989).

    Google Scholar 

  37. D. Würtz, T. Schneider, and A. Politi, Renormalization-group study of Fibonacci chains,Phys. Lett. A 129:88–92 (1988).

    Google Scholar 

  38. J. Q. You and Q. B. Yang, Dynamical maps and Cantor like spectra for a class of one-dimensional quasi-periodic lattices,J. Phys.: Condensed Matter 2:2093–2098 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iochum, B., Testard, D. Power law growth for the resistance in the Fibonacci model. J Stat Phys 65, 715–723 (1991). https://doi.org/10.1007/BF01053750

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01053750

Key words

Navigation