Skip to main content
Log in

Perturbation Theory for Parent Hamiltonians of Matrix Product States

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This article investigates the stability of the ground state subspace of a canonical parent Hamiltonian of a Matrix product state against local perturbations. We prove that the spectral gap of such a Hamiltonian remains stable under weak local perturbations even in the thermodynamic limit, where the entire perturbation might not be bounded. Our discussion is based on preceding work by Yarotsky that develops a perturbation theory for relatively bounded quantum perturbations of classical Hamiltonians. We exploit a renormalization procedure, which on large scale transforms the parent Hamiltonian of a Matrix product state into a classical Hamiltonian plus some perturbation. We can thus extend Yarotsky’s results to provide a perturbation theory for parent Hamiltonians of Matrix product states and recover some of the findings of the independent contributions (Cirac et al in Phys Rev B 8(11):115108, 2013) and (Michalakis and Pytel in Comm Math Phys 322(2):277–302, 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Affleck, I., Kennedy, T., Lieb, E., Tasaki, H.: Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett. 59(7), 799–802 (1987)

    Article  ADS  Google Scholar 

  2. Albanese, C.: Unitary dressing transformations and exponential decay below the threshold for quantum spin systems. Comm. Math. Phys. 134(1–27), 237–272 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Bhatia, R.: Matrix Analysis. Graduate Texts in Mathematics. Springer, Berlin (1996)

    MATH  Google Scholar 

  4. Bravyi, S., Hastings, M., Michalakis, S.: Topological quantum order: stability under local perturbations. J. Math. Phys. 51, 093512 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  5. Cirac, J., Michalakis, S., Péres-García, D., Schuch, N.: Robustness in projected entangled pair states. Phys. Rev. B 8(11), 115108 (2013). arXiv:1306.4003

  6. Fannes, M., Nachtergaele, B., Werner, R.: Finitely correlated states on quantum spin chains. Comm. Math. Phys. 144(3), 443–490 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Kennedy, T., Tasaki, H.: Hidden symmetry breaking in the Haldane phase S=1 quantum spin chains. Comm. Math. Phys. 147, 431–484 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Kennedy, T., Tasaki, H.: Hidden \(Z_2\times Z_2\) symmetry breaking in Haldane gap antiferromagnets. Phys. Rev. B 45, 304 (1992)

    Article  ADS  Google Scholar 

  9. Kretschmann, D., Schlingemann, D., Wolf, M., Werner, R.: The information-disturbance tradeoff and the continuity of Stinespring’s theorem. IEEE Trans. Inf. Theory 54(4), 1708–1717 (2006)

    Article  Google Scholar 

  10. Michalakis, S., Pytel, J.: Stability of frustration-free Hamiltonians. Comm. Math. Phys. 322(2), 277–302 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Nachtergaele, B.: The spectral gap for some quantum spin chains with discrete symmetry breaking. Comm. Math. Phys. 175, 565–606 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Paulsen, V.I.: Completely Bounded Maps and Operator Algebras. Cambridge University Press, Cambridge (2002)

  13. Pérez-García, D., Verstaete, F., Wolf, M., Cirac, J.: Matrix product state representations. Quantum Inf. Comput. 7, 401–430 (2007)

    MATH  MathSciNet  Google Scholar 

  14. Sanz, M., Péres-García, D., Wolf, M., Cirac, J.I: A quantum version of Wielandt’s inequality. IEEE Trans. on Inf. Theory, 56(9), 4668–4673 (2010)

  15. Schuch, N., Péres-García, D., Cirac, J.I.: Classifying quantum phases using matrix product states and projected entangled pair states. Phys. Rev. B, 84(16), 165139 (2011)

  16. Spitzer, W., Starr, S.: Improved bounds on the spectral gap above frustration free ground states of quantum spin chains. Lett. Math. Phys. 63, 165–177 (2002)

    Article  MathSciNet  Google Scholar 

  17. Szehr, O., Reeb, D., Wolf, M.: Spectral convergence bounds for classical and quantum Markov processes. Comm. Math. Phys. 333(2), 565–595. doi:10.1007/s00220-014-2188-5

  18. Szehr, O., Wolf, M.: Topology of irreducible maps and the classification of 1D quantum phases. Forthcoming 2015

  19. Verstraete, F., Cirac, J.I., Latorre, J.I., Rico, E., Wolf, M.M.: Renormalization-group transformations on quantum states. Phys. Rev. Lett. 94, 140601 (2005)

    Article  ADS  Google Scholar 

  20. Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003)

    Article  ADS  Google Scholar 

  21. Watrous, J.: Notes on Super-Operator Norms Induced by Schatten Norms (2004). arXiv:0411077v1

  22. White, S.: Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863 (1992)

    Article  ADS  Google Scholar 

  23. Wilson, K.: The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773–840 (1975)

    Article  ADS  Google Scholar 

  24. Yarotsky, D.: Perturbations of ground states in weakly interacting quantum spin systems. J. Math. Phys. 45, 2134–2152 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Yarotsky, D.A.: Ground states in relatively bounded quantum perturbations of classical lattice systems. Comm. Math. Phys. 261(3), 799–819 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  26. Yarotsky, D.: Uniqueness of the ground state in weak perturbations of non-interacting gapped quantum lattice systems. J. Stat. Phys. 118, 119–144 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the QCCC programme of the Elite Network of Bavaria, the CHIST-ERA/BMBF Project CQC and the Alfried Krupp von Bohlen und Halbach–Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Szehr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szehr, O., Wolf, M.M. Perturbation Theory for Parent Hamiltonians of Matrix Product States. J Stat Phys 159, 752–771 (2015). https://doi.org/10.1007/s10955-015-1204-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1204-2

Keywords

Navigation