Skip to main content
Log in

Edge Scaling of the β-Jacobi Ensemble

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the scaling limit of the spectrum of the β-Jacobi ensemble at the soft edge and hard edge for general values of β. We show that the limiting point processes correspond respectively to the stochastic Airy and Bessel point processes introduced in Ramírez et al. (J. Am. Math. Soc. 24(4):919–944, 2011) and Ramírez and Rider (Commun. Math. Phys. 288(3):887–906, 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bloemendal, A., Virag, B.: Limit of spiked random matrices I. arXiv:1011.1877v2 (2010)

  2. Bourgade, P., Erdos, L., Yau, H.T.: Universality of general β-ensembles. arXiv:1104.2272v5 (2011)

  3. Capitaine, M., Casalis, M.: Asymptotic freeness by generalized moments for Gaussian and Wishart matrices. Indiana Univ. Math. J. 53, 397–432 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Collins, B.: Product of random projections, Jacobi ensembles and universality problems arising from free probability. Probab. Theory Relat. Fields 133, 315–344 (2005)

    Article  MATH  Google Scholar 

  5. Dumitriu, I.: Smallest eigenvalue distributions for two classes of β-Jacobi ensembles. arXiv:1009.4677 [math.PR] (2010)

  6. Dumitriu, I., Edelman, A.: Matrix models for beta ensembles. J. Math. Phys. 43(11), 5830–5847 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Dumitriu, I., Forrester, J.: Tridiagonal realization of the anti-symmetric Gaussian β-ensemble. J. Math. Phys. 51(9), 093302 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  8. Dumitriu, I., Koev, P.: Distribution of the extreme eigenvalues of the Beta-Jacobi random matrix model. SIAM J. Matrix Anal. Appl. 30, 1–6 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dette, H., Nagel, J.: Some asymptotic properties of the spectrum of the Jacobi ensemble. SIAM J. Math. Anal. 41(4), 1491–1507 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ethier, S.N., Kurtz, T.: Markov Processes. Characterization and Convergence. Wiley, New York (1988)

    Google Scholar 

  11. Edelman, A., Sutton, B.: From random matrices to stochastic operators. J. Stat. Phys. 127(6), 1121–1165 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Jacquot, S., Valko, B.: Bulk scaling limit of the Laguerre ensemble. Electron. J. Probab. 16(11), 314–346 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Jiang, T.: Limit theorems for Beta-Jacobi ensembles. arXiv:0911.2262 (2009)

  14. Johnstone, I.: Multivariate analysis and Jacobi ensembles: largest eigenvalue, Tracy-Widom limits and rates of convergence. Ann. Stat. 36(6), 2638–2716 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Killip, R., Nenciu, I.: Matrix models for circular ensembles. Int. Math. Res. Not. 2004(50), 2665–2701 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mehta, M.L.: Random Matrices. Elsevier/Academic Press, Amsterdam (2004)

    MATH  Google Scholar 

  17. Nagao, T., Forrester, P.: Asymptotic correlations at the spectrum edge of random matrices. Nucl. Phys. B 435, 401–420 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Nagao, T., Wadati, M.: Eigenvalue distribution of Random Matrices at the spectrum edge. J. Phys. Soc. Jpn. 62, 3845–3856 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Ramírez, J., Rider, B., Virág, B.: Beta ensembles, stochastic Airy spectrum, and a diffusion. J. Am. Math. Soc. 24(4), 919–944 (2011)

    Article  MATH  Google Scholar 

  20. Ramírez, J., Rider, B.: Diffusion at the random matrix hard edge. Commun. Math. Phys. 288(3), 887–906 (2009)

    Article  ADS  MATH  Google Scholar 

  21. Sutton, B.: The stochastic operator approach to random matrix theory. PhD thesis, Massachusetts Institute of Technology (2005)

  22. Tracy, C., Widom, H.: Level spacing distributions and the Airy kernel. Commun. Math. Phys. 159(1), 151–174 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Tracy, C., Widom, H.: Level spacing distributions and the Bessel kernel. Commun. Math. Phys. 161(2), 289–309 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Valkó, B., Virág, B.: Continuum limits of random matrices and the Brownian carousel. Invent. Math. 177(3), 463–508 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Wishart, J.: The generalised product moment distribution in samples from a normal multivariate population. Biometrika 20A(1–2), 32–52 (1928)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Benedek Valkó for introducing them to the field of random matrices and suggesting this problem. We also thank the referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregorio R. Moreno Flores.

Appendix: Proof of Theorem 2

Appendix: Proof of Theorem 2

We will be working primarily with a lower bidiagonal matrix M, and the symmetric tridiagonal matrix MM T. For convenience we will adopt the following notations. Denote the diagonal entries of our symmetric tridiagonal matrix MM T by \(\underline {a}= \{a_{1},\ldots,a_{n}\}\) and its off-diagonal entries by \(\underline {b}=\{b_{1},\ldots, b_{n-1} \}\). For the entries of the bi-diagonal matrix M use \(\underline {x}= \{x_{1},\ldots,x_{n}\}\) to denote the diagonal entries and \(\underline {y}=\{ y_{1},\ldots,y_{n-1} \}\) for its sub-diagonal entries. We will also use another tridiagonal matrix which arises in the following lemma (see e.g. [7]):

Lemma 23

Let M be an n×n bidiagonal matrix with a 1,a 2,…,a n in the diagonal and b 1,b 2,…,b n−1 in the off-diagonal. Consider the 2n×2n symmetric tridiagonal matrix L which has zeros in the main diagonal and a 1,b 1,a 2,b 2,…,a n above and below the diagonal. If the singular values of M are λ 1,λ 2,…,λ n then the eigenvalues of L are ±λ i ,i=1…n.

Recall the definitions of M β,n ,C k and \(\tilde{C}_{k}\) from the statement of Theorem 2. It will be convenient write \(\{C_{i},S_{i}\}_{i=1}^{n}\) and \(\{\tilde{C}_{i}, \tilde{S}_{i}\}_{i=1}^{n-1}\) in terms of a set of random angles \(\underline {\alpha }= \{ \alpha_{1}, \ldots, \alpha_{n} \}\) and \(\underline {\theta }=\{\theta_{1},\ldots, \theta_{n-1}\}\) where C k =cos(α k ) and \(\tilde{C}_{k} = \cos(\theta_{k})\). Then, S k =sin(α k ) and \(\tilde{S}_{k} = \sin(\theta_{k})\), and the densities of the random angles α k and θ k are:

with a,b defined as in Theorem 2 and B(x,y) the beta function. By independence, the joint density of \((\underline {\alpha }, \underline {\theta })\) is given by the product of the densities. For convenience we will denote

$$\tilde{Z}_{\beta,n}= \frac{2^{2n-1}}{\prod_{k=1}^nB ( \frac {\beta}{2}(n_1-n+k), \frac{\beta}{2}(n_2-n+k) ) \prod_{k=1}^{n-1}B ( \frac {\beta}{2}k, \frac{\beta}{2}(n_1+n_2-2n+k+1) )} $$

This will be the necessary normalizing constant.

We will now map \((\underline {\alpha }, \underline {\theta })\) to the entries of M and from there to \((\underline {\lambda }, \underline {q})\) where the λ i are the eigenvalues of MM T and the q i are the positive leading entries of the corresponding normalized eigenvectors. This second map will actually by the composition of several maps.

From the angles we map to the entries of the bidiagonal matrix:

Lemma 24

The Jacobian of the transform \(T:(\underline {\alpha }, \underline {\theta }) \to (\underline {x}, \underline {y})\), where

(for notational convenience we take θ n =π/2) is given by

Proof

The matrix of the partial derivatives with ordering (α 1,…,α n ,θ 1,…,θ n−1)→(x 1,…,x n ,y 1,…,y n−1) has diagonal entries

$$- \sin\alpha_1 \sin\theta_1,\ldots.,-\sin \alpha_{n-1}\sin\theta_{n-1}, -\sin\alpha_n, - \sin \alpha_2 \sin\theta_1,\ldots, -\sin\alpha_n \sin \theta_{n-1}. $$

Row and column reduction gives us that the determinant is given by the product of the diagonal, therefore

$$J_T= -\frac{\sin^2(\alpha_n)}{\sin(\alpha_1)} \prod_{k=1}^{n-1} \sin^2(\alpha_k)\sin^2(\theta_k) $$

 □

We finish by mapping from the bidiagonal to the tridiagonal matrix, which in turn is mapped to by the eigenvalues. Denote by q 1,…,q n the leading entries of the eigenvectors associated with the ordered eigenvalues λ 1<λ 2<⋯<λ n of the tridiagonal matrix normalized so that q i >0 and \(\sum q_{i}^{2} =1\).

Lemma 25

([6], Lemmas 2.7, 2.9 and 2.11)

For \(\underline {x},\underline {y},\underline {a},\underline {b},\underline {\lambda }\) and \(\underline {q}\) defined as above we have the following:

  1. (1)

    The Jacobian of the map \(\psi: (\underline {x}, \underline {y}) \to(\underline {a}, \underline {b})\) can be written as

    $$J_\psi= 2^n x_1 \prod _{i=2}^{n} x_i^2. $$
  2. (2)

    The Vandermonde determinant for the ordered eigvenvalues of a symmetric tridiagonal matrix with positive sub-diagonal b=(b n−1,…,b 1) is given by

    $$\Delta( \underline {\lambda })= \prod_{i<j}( \lambda_i-\lambda_j)= \frac{\prod_{i=1}^{n-1} b_i^i}{\prod_{i=1}^n q_i}. $$
  3. (3)

    The Jacobian of the map \(\phi:(\underline {a}, \underline {b}) \to(\underline {\lambda }, \underline {q})\) can be written as

    $$J_\phi= \frac{\prod_{i=1}^{n-1} b_i}{\prod_{i=1}^n q_i}. $$

Written in terms of our \(\underline {x}, \underline {y}, \underline {a}\), and \(\underline {b}\) with \(Q_{n}= \prod_{i=1}^{n} q_{i}\) we get

The remainder of the proof of Theorem 2, is to show that the Jacobian of the transformation gives the desired result.

We substitute in the following pieces: first, notice that

$$(\det M_{n,\beta})^2 = \prod_{i=1}^n \lambda_i = \prod_{k=1}^n \cos^2 \alpha_k \cdot\prod_{k=1}^{n-1} \sin^2 \theta_k. $$

Then, applying Lemma 23, the singular values of M n,β are the squares of the eigenvalues of the symmetric tridiagonal matrix L with zeroes in the main diagonal and

$$C_n, S_n \tilde{C}_{n-1}, C_{n-1} \tilde{S}_{n-1}, \dots, S_2 \tilde{C}_1, C_1 \tilde{S}_1, $$

in the off-diagonal. We can check that L+I can be written as AA T where A is the bidiagonal matrix with

$$1, S_n, \tilde{S}_{n-1}, S_{n-1}, \dots, S_1, \quad\mbox{and}\quad C_n, \tilde{C}_{n-1}, C_{n-1}, \tilde{C}_{n-2}, \dots, C_1 $$

in the diagonal and below the diagonal respectively. Using the characterization from Lemma 23, we find that

$$\det(L+I) = \prod_{{}^{k=1,\ldots,n}_{ \epsilon=+,-}} 1 + \epsilon \sqrt{ \lambda_k} = \prod^n_{k=1} (1- \lambda_k) = (\det A)^2 = \prod _{k=1}^n \sin^2 \alpha_k \prod_{k=1}^{n-1} \sin^2 \theta_k. $$

Remark 26

At this point one could again apply Lemma 23 to A to find a 4n×4n matrix with zeros in the diagonal and

$$1, C_n , S_n, \tilde{C}_{n-1}, \tilde{S}_{n-1}, C_{n-1},\ldots,C_1,S_1 $$

above and below the diagonal. This matrix will have eigenvalue \(\pm \sqrt{1\pm\sqrt{\lambda_{k}}}\).

Lastly recall ([6], Lemma 2.7) that we have

$$\Delta(\lambda)= \frac{1}{Q_n} \prod_{k=1}^{n-1} b_k^k= \frac {1}{Q_n}\prod _{k=1}^n \sin^{k-1}\alpha_k \cos^{k-1}\alpha_k \cdot\prod_{k=1}^{n-1} \cos^k\theta_k \cdot\prod_{k=1}^{n-1} \sin^{k-1}\theta_k. $$

Making all the appropriate substitutions this gives us that

From this we can see that the joint density function of \(\underline {q}\) and \(\underline {\lambda }\) separate. As in the Hermite and Laguerre cases we have that \(\underline {q}\sim( \chi_{\beta},\ldots,\chi_{\beta})\) normalized to unit length [6]. This give us that for the unordered eigenvalues

$$f_{\beta,n,n_1,n_2}(\underline {\lambda })= \frac{\tilde{Z}_{\beta,n}}{2^n n!}\frac{ [\varGamma(\frac{\beta}{2}) ]^n}{\varGamma( \frac{\beta n}{2} )}\prod _{i<j}|\lambda_i- \lambda_j|^\beta \cdot\prod_{k=1}^n \lambda_k^a \cdot\prod_{k=1}^n (1- \lambda_k)^b. $$

This completes the proof of Theorem 2.  □

Remark 27

The normalizing constant on the final density can be written as

$$Z_{\beta,n} = \biggl[ \varGamma\biggl(\frac{\beta}{2} \biggr) \biggr]^n \prod_{k=1}^n \frac{\varGamma ( \frac{\beta}{2} (n_1+n_2-n+k) )}{\varGamma( \frac{\beta}{2}(n_1-n+k) )\varGamma( \frac{\beta }{2}(n_2-n+k) )\varGamma( \frac{\beta}{2}k )}. $$

This gives an alternate derivation for the Selberg integral.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holcomb, D., Moreno Flores, G.R. Edge Scaling of the β-Jacobi Ensemble. J Stat Phys 149, 1136–1160 (2012). https://doi.org/10.1007/s10955-012-0634-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0634-3

Keywords

Navigation