Skip to main content
Log in

Correlated Tunneling in Hydrogen Bonds

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the quantum nature of the protons participating in hydrogen bonds in several ice structures by analyzing the one particle density matrix. We find that in all cases, including ice Ih, the most common form of ice, and the high pressure phases, ice VIII, VII, and X, the system is ground-state dominated. However, while the dynamics is uncorrelated in the structures with standard asymmetric hydrogen bonds, such as ice Ih and VIII, local correlations among the protons characterize ice VII and, to a lesser extent, ice X in the so-called low barrier hydrogen bond regime. The correlations appear along the path to hydrogen bond symmetrization, when quantum fluctuations delocalize the proton on the two bond sides. The correlations derive from a strong requirement for local charge neutrality that favors concerted motion along the bonds. The resulting behavior deviates substantially from mean field theory, which would predict in ice VII coherent tunneling of the proton between the two bond sides, thereby causing an ionization catastrophe. Due to the correlations, the quantum state of the proton is entangled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreani, C., Colognesi, D., Mayers, J., Reiter, G., Senesi, R.: Adv. Phys. 54, 377 (2005)

    Article  ADS  Google Scholar 

  2. Soper, A., Benmore, C.: Phys. Rev. Lett. 101, 65502 (2008)

    Article  ADS  Google Scholar 

  3. Morrone, J.A., Car, R.: Phys. Rev. Lett. 101, 017801 (2008)

    Article  ADS  Google Scholar 

  4. Bratos, S., Diraison, M., Tarjus, G., Leicknam, J.C.: Phys. Rev. A 45, 5556 (1992)

    Article  ADS  Google Scholar 

  5. Ramirez, R., Lopez-Ciudad, T., P, P.K., Marx, D.: J. Chem. Phys. 121, 3973 (2004)

    Article  ADS  Google Scholar 

  6. Paesani, F., Iuchi, S., Voth, G.A.: J. Chem. Phys. 127, 074506 (2007)

    Article  ADS  Google Scholar 

  7. Habershon, S., Fanourgakis, G.S., Manolopoulos, D.E.: J. Chem. Phys. 129, 074501 (2008)

    Article  ADS  Google Scholar 

  8. Beck, T.L.: Free Energy Calculations: Theory and Applications in Chemistry and Biology. Springer, Berlin (2007) (Chap. 11, p. 387)

    Google Scholar 

  9. Lin, L., Morrone, J.A., Car, R., Parrinello, M.: Phys. Rev. B 83, 220302(R) (2011)

    ADS  Google Scholar 

  10. Bernal, J., Fowler, R.: J. Chem. Phys. 1, 515 (1933)

    Article  ADS  Google Scholar 

  11. Pauling, L.: J. Am. Chem. Soc. 57, 2680 (1935)

    Article  Google Scholar 

  12. Stillinger, F., Schweizer, K.: J. Phys. Chem. 87, 4281 (1983)

    Article  Google Scholar 

  13. Schweizer, K., Stillinger, F.: Phys. Rev. B 29, 350 (1984)

    Article  ADS  Google Scholar 

  14. Schweizer, K., Stillinger, F.: J. Chem. Phys. 80, 1230 (1984)

    Article  ADS  Google Scholar 

  15. Benoit, M., Marx, D., Parrinello, M.: Nature 392, 258 (1998)

    Article  ADS  Google Scholar 

  16. Morrone, J.A., Lin, L., Car, R.: J. Chem. Phys. 130, 204511 (2009)

    Article  ADS  Google Scholar 

  17. Neto, A., Pujol, P., Fradkin, E.: Phys. Rev. B 74, 024302 (2006)

    Article  ADS  Google Scholar 

  18. Bramwell, S., Gingras, M.: Science 294, 1495 (2001)

    Article  ADS  Google Scholar 

  19. Feynman, R., Hibbs, A.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  20. Chandler, D., Wolynes, P.: J. Chem. Phys. 74, 4078 (1981)

    Article  ADS  Google Scholar 

  21. Hohenberg, P., Kohn, W.: Phys. Rev. 136, B864 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  22. Kohn, W., Sham, L.: Phys. Rev. 140, A1133 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  23. Car, R., Parrinello, M.: Phys. Rev. Lett. 55, 2471 (1985)

    Article  ADS  Google Scholar 

  24. Marx, D., Parrinello, M.: J. Chem. Phys. 104, 4077 (1996)

    Article  ADS  Google Scholar 

  25. Tuckerman, M., Marx, D., Klein, M., Parrinello, M.: J. Chem. Phys. 104, 5579 (1996)

    Article  ADS  Google Scholar 

  26. Marx, D., Tuckerman, M., Martyna, G.: Comput. Phys. Commun. 118, 166 (1999)

    Article  ADS  MATH  Google Scholar 

  27. Morrone, J.A., Srinivasan, V., Sebastiani, D., Car, R.: J. Chem. Phys. 126, 234504 (2007)

    Article  ADS  Google Scholar 

  28. Benoit, M., Marx, D.: Chem. Phys. Chem. 6, 1738 (2005)

    Article  Google Scholar 

  29. Robertson, J., Ubbelohde, A.: Proc. R. Soc. Lond. Ser. A 170, 222 (1939)

    Article  ADS  MATH  Google Scholar 

  30. Lin, L., Morrone, J.A., Car, R., Parrinello, M.: Phys. Rev. Lett. 105, 110602 (2010)

    Article  ADS  Google Scholar 

  31. Bove, L.E., Klotz, S., Paciaroni, A., Sacchetti, F.: Phys. Rev. Lett. 103, 165901 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Car.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, L., Morrone, J.A. & Car, R. Correlated Tunneling in Hydrogen Bonds. J Stat Phys 145, 365–384 (2011). https://doi.org/10.1007/s10955-011-0320-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0320-x

Keywords

Navigation