Skip to main content
Log in

A Hopping Mechanism for Cargo Transport by Molecular Motors on Crowded Microtubules

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Most models designed to study the bidirectional movement of cargos as they are driven by molecular motors rely on the idea that motors of different polarities can be coordinated by external agents if arranged into a motor-cargo complex to perform the necessary work Gross, Hither and yon: a review of bidirectional microtubule-based transport (Gross in Phys. Biol. 1:R1–R11, 2004). Although these models have provided us with important insights into these phenomena, there are still many unanswered questions regarding the mechanisms through which the movement of the complex takes place on crowded microtubules. For example (i) how does cargo-binding affect motor motility? and in connection with that—(ii) how does the presence of other motors (and also other cargos) on the microtubule affect the motility of the motor-cargo complex? We discuss these questions from a different perspective. The movement of a cargo is conceived here as a hopping process resulting from the transference of cargo between neighboring motors. In the light of this, we examine the conditions under which cargo might display bidirectional movement even if directed by motors of a single polarity. The global properties of the model in the long-time regime are obtained by mapping the dynamics of the collection of interacting motors and cargos into an asymmetric simple exclusion process (ASEP) which can be resolved using the matrix ansatz introduced by Derrida (Derrida and Evans in Nonequilibrium Statistical Mechanics in One Dimension, pp. 277–304, 1997; Derrida et al. in J. Phys. A 26:1493–1517, 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gross, S.P.: Hither and yon: a review of bidirectional microtubule-based transport. Phys. Biol. 1, R1–R11 (2004)

    Article  ADS  Google Scholar 

  2. Welte, M.A.: Bidirectional transport along microtubules. Curr. Biol. 14, R525–R537 (2004)

    Article  Google Scholar 

  3. Zeldovich, K.B., Joanny, J.-F., Prost, J.: Motor proteins transporting cargos. Eur. Phys. J. E 17, 155–163 (2005)

    Article  Google Scholar 

  4. Mallick, R., Gross, S.P.: Molecular motors: strategies to get along. Curr. Biol. 23, R971–R982 (2004)

    Article  Google Scholar 

  5. Klumpp, S., Müller, M.J., Lipowsky, R.: Cooperative transport by small teams of molecular motors. Biophys. Rev. Lett. 1, 353–361 (2006)

    Article  Google Scholar 

  6. Ma, S., Chisholm, R.L.: Cytoplasmatic dynein-associated structures move bidirectionally in vivo. J. Cell. Sci. 115, 1453–1460 (2002)

    Google Scholar 

  7. Kulic, I.M., Brown, A.E.X., Kim, H., Kural, C., Blehm, B., Selvin, P.R., Nelson, P.C., Gelfand, V.I.: The role of microtubule movement in bidirectional organelle transport. Proc. Natl. Acad. Sci. USA 105, 10011–10016 (2008)

    Article  ADS  Google Scholar 

  8. Ally, S., Larson, A.G., Barlan, K., Rice, S.E., Gelfand, V.I.: Opposite-polarity motors activate one another to trigger cargo transport in live cells. J. Cell Biol. 187, 1071–1082 (2009)

    Article  Google Scholar 

  9. Klumpp, S., Lipowsky, R.: Traffic of molecular motors through tube-like compartments. J. Stat. Phys. 113, 233–268 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Seitz, A., Surrey, T.: Processive movement of single kinesins on crowded microtubules visualized using quantum dots. EMBO J. 25, 267–277 (2006)

    Article  Google Scholar 

  11. Beeg, J., Klumpp, S., Dimova, R., Gracià, R.S., Unger, E., Lipowsky, R.: Transport of beads by several kinesin motors. Biophys. J. 94, 538–541 (2008)

    Google Scholar 

  12. Goldman, C., Sena, E.T.: The dynamics of cargo driven by molecular motors in the context of an asymmetric simple exclusion process. Physica A 388, 3455–3464 (2009)

    Article  ADS  Google Scholar 

  13. Ferrari, P.A., Kipnis, C., Saada, E.: Microscopic structure of travelling waves in the asymmetric simple exclusion process. Ann. Probab. 19, 226–244 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Derrida, B., Janowsky, S.A., Lebowitz, J.L., Speer, E.R.: Exact solution of the totally asymmetric simple exclusion process: shock profiles. J. Stat. Phys. 73, 813–842 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Blythe, R.A., Evans, M.R.: Nonequilibrium steady states of matrix-product form: a solver’s guide. J. Phys. A, Math. Theor. 40, R333–R441 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Parmeggiani, A., Franosch, T., Frey, E.: Totally Asymmetric Simple Exclusion Process with Langmuir Kinetics. Phys. Rev. E 70, 046101 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  17. Chowdhury, D.: Traffic flow of interacting self-driven particles: rails and trail, vehicles and vesicles. Phys. Scr. T 106, 13–18 (2003)

    Article  ADS  Google Scholar 

  18. Verhey, K.J., Hammond, J.W.: Traffic control: regulation of kinesin motors. Nat. Rev. Mol. Cell Biol. 10, 765–777 (2009)

    Article  Google Scholar 

  19. Imanishi, M., Endres, N.F., Gennerich, A., Vale, R.D.: Autoinhibition regulates the motility of the C.elegans intraflagellar transport motor OSM-3. J. Cell Biol. 174, 931–937 (2006)

    Article  Google Scholar 

  20. Yildiz, A., Tomishige, M., Gennerich, A., Vale, R.D.: Intramolecular strain coordinates kinesin stepping behavior along microtubules. Cell 134, 1030–1041 (2008)

    Article  Google Scholar 

  21. Nishiyama, M., Higuchi, H., Yanagida, T.: Chemomechanical coupling of the forward and backward steps of single kinesin molecules. Nat. Cell Biol. 4, 790–797 (2002)

    Article  Google Scholar 

  22. Ishii, Y., Taniguchi, Y., Iwaki, M., Yanagida, T.: Thermal fluctuations biased for directional motion in molecular motors. Biosystems 93, 34–38 (2008)

    Article  Google Scholar 

  23. Derrida, B., Evans, M.R.: The asymmetric exclusion model: exact results through a matrix approach. In: Nonequilibrium Statistical Mechanics in One Dimension, pp. 277–304. University Press, UK (1997), Chap. 14

    Chapter  Google Scholar 

  24. Derrida, B., Evans, M.R., Hakim, V., Pasquier, V.: An exact solution of a 1D asymmetric exclusion model using a matrix formulation. J. Phys. A 26, 1493–1517 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Marchetti, D.H.U., da Veiga, P.A.F., Hurd, T.R.: The 1/N-expansion as a perturbation about the mean field theory: a one-dimensional fermion model. Commun. Math. Phys. 179, 623–646 (1996)

    Article  MATH  ADS  Google Scholar 

  26. Murray, J.D.: Asymptotic Analysis. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  27. Rossi, L.W., Santos, T., Goldman, C.: work in progress

  28. Kawaguchi, K., Uemura, S., Ishiwata, S.: Equilibrium and transition between single- and double-headed binding of kinesin as revealed by single-molecule mechanics. Biophys. J. 84, 1103–1113 (2004)

    Article  Google Scholar 

  29. Howard, J.: Mechanics of Motor Proteins and the Cytoskeleton. Sinauer, Sunderland (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Goldman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldman, C. A Hopping Mechanism for Cargo Transport by Molecular Motors on Crowded Microtubules. J Stat Phys 140, 1167–1181 (2010). https://doi.org/10.1007/s10955-010-0037-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-0037-2

Keywords

Navigation