Skip to main content
Log in

Scaled Limit and Rate of Convergence for the Largest Eigenvalue from the Generalized Cauchy Random Matrix Ensemble

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper, we are interested in the asymptotic properties for the largest eigenvalue of the Hermitian random matrix ensemble, called the Generalized Cauchy ensemble GCyE, whose eigenvalues PDF is given by

$$\textrm{const}\cdot\prod_{1\leq j<k\leq N}(x_j-x_k)^2\prod_{j=1}^N(1+ix_j)^{-s-N}(1-ix_j)^{-\overline{s}-N}dx_j,$$

where s is a complex number such that (s)>−1/2 and where N is the size of the matrix ensemble. Using results by Borodin and Olshanski (Commun. Math. Phys., 223(1):87–123, 2001), we first prove that for this ensemble, the law of the largest eigenvalue divided by N converges to some probability distribution for all s such that (s)>−1/2. Using results by Forrester and Witte (Nagoya Math. J., 174:29–114, 2002) on the distribution of the largest eigenvalue for fixed N, we also express the limiting probability distribution in terms of some non-linear second order differential equation. Eventually, we show that the convergence of the probability distribution function of the re-scaled largest eigenvalue to the limiting one is at least of order (1/N).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, M., Forrester, P., Nagao, T., van Moerbeke, P.: Classical skew orthogonal polynomials and random matrices. J. Stat. Phys. 99(1–2), 141–170 (2000)

    Article  MATH  Google Scholar 

  2. Borodin, A., Deift, P.: Fredholm determinants, Jimbo-Miwa-Ueno-τ-functions, and representation theory. Commun. Pure Appl. Math. 55, 1160–1230 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Borodin, A., Olshanski, G.: Infinite random matrices and Ergodic measures. Commun. Math. Phys. 223(1), 87–123 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Bourgade, P., Nikeghbali, A., Rouault, A.: Hua-Pickrell measures on general compact groups. arXiv:0712.0848v1 (2007)

  5. Bourgade, P., Nikeghbali, A., Rouault, A.: Circular Jacobi ensembles and deformed Verblunsky coefficients. arXiv:0804.4512v2 (2008)

  6. Choup, L.: Edgeworth expansion of the largest eigenvalue distribution function of GUE and LUE. In: IMRN, vol. 2006, p. 61049 (2006)

  7. Cosgrove, C.M., Scoufis, G.: Painlevé classification of a class of differential equations of the second order and second degree. Stud. Appl. Math. 88(1), 25–87 (1993)

    MATH  MathSciNet  Google Scholar 

  8. El Karouie, N.: A rate of convergence result for the largest eigenvalue of complex white Wishart matrices. Ann. Probab. 34(6), 2077–2117 (2006)

    Article  MathSciNet  Google Scholar 

  9. Forrester, P.J.: Random Matrices and Log Gases. Book in preparation

  10. Forrester, P.J., Witte, N.S.: Application of the τ-function theory of Painlevé equations to random matrices: P VI , the JUE, CyUE, cJUE and scaled limits. Nagoya Math. J. 174, 29–114 (2002)

    MathSciNet  Google Scholar 

  11. Forrester, P.J., Witte, N.S.: Random matrix theory and the sixth Painlevé equation. J. Phys. A, Math. Gen. 39, 12211–12233 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Garoni, T.M., Forrester, P.J., Frankel, N.E.: Asymptotic corrections to the eigenvalue density of the GUE and LUE. J. Math. Phys. 46, 103301 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  13. Jimbo, M., Miwa, T., Môri, Y., Sato, M.: Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent. Physica D 1, 80–158 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  14. Johnstone, I.M.: On the distribution of the largest principal component. Ann. Math. Stat. 29, 295–327 (2001)

    MATH  MathSciNet  Google Scholar 

  15. Kamien, R.D., Politzer, H.D., Wise, M.B.: Universality of random-matrix predictions for the statistics of energy levels. Phys. Rev. Lett. 60, 1995–1998 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  16. Mahoux, G., Mehta, M.L.: A method of integration over matrix variables: IV. J. Phys. I Fr. 1, 1093–1108 (1991)

    Article  MathSciNet  Google Scholar 

  17. Mehta, M.L.: Random Matrices. Academic Press, San Diego (1991)

    MATH  Google Scholar 

  18. Nagao, T., Wadati, M.: Correlation functions of random matrix ensembles related to classical orthogonal polynomials. J. Phys. Soc. Jpn. 6, 3298–3322 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  19. Pastur, L.A.: On the universality of the level spacing distribution for some ensembles of random matrices. Lett. Math. Phys. 25, 259–265 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Péché, S.: The largest eigenvalues of small rank perturbations of Hermitian random matrices. Probab. Theor. Relat. Fields 134(1), 127–174 (2006)

    Article  MATH  Google Scholar 

  21. Soshnikov, A.: Universality at the edge of the spectrum in Wigner random matrices. Commun. Math. Phys. 207, 697–733 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Soshnikov, A.: Poisson statistics for the largest eigenvalues in random matrix ensembles. In: Mathematical Physics of Quantum Mechanics. Lecture Notes in Phys., vol. 690. Springer, Berlin (2006)

    Chapter  Google Scholar 

  23. Tracy, C.A., Widom, H.: Level-Spacing distributions and the Airy kernel. Commun. Math. Phys. 159, 151–174 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Tracy, C.A., Widom, H.: Level-Spacing distributions and the Bessel kernel. Commun. Math. Phys. 161, 289–309 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Tracy, C.A., Widom, H.: Fredholm determinants, differential equations and matrix models. Commun. Math. Phys. 163(1), 33–72 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Witte, N.S., Forrester, P.J.: Gap probabilities in the finite and scaled Cauchy random matrix ensembles. Nonlinearity 13, 1965–1986 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Rubin.

Additional information

All authors are supported by the Swiss National Science Foundation (SNF) grant 200021_119970/1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Najnudel, J., Nikeghbali, A. & Rubin, F. Scaled Limit and Rate of Convergence for the Largest Eigenvalue from the Generalized Cauchy Random Matrix Ensemble. J Stat Phys 137, 373 (2009). https://doi.org/10.1007/s10955-009-9854-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-009-9854-6

Navigation