Skip to main content
Log in

Sequential Cavity Method for Computing Free Energy and Surface Pressure

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We propose a new method for the problems of computing free energy and surface pressure for various statistical mechanics models on a lattice ℤd. Our method is based on representing the free energy and surface pressure in terms of certain marginal probabilities in a suitably modified sublattice of ℤd. Then recent deterministic algorithms for computing marginal probabilities are used to obtain numerical estimates of the quantities of interest. The method works under the assumption of Strong Spatial Mixing (SSP), which is a form of a correlation decay.

We illustrate our method on the hard-core and monomer-dimer models, on which we improve several earlier estimates. For example we show that the exponential of the monomer-dimer coverings of ℤ3 belongs to the interval [0.78595,0.78599], improving best previously known estimate of [0.7850,0.7862] obtained in (Friedland and Peled in Adv. Appl. Math. 34:486–522, 2005; Friedland et al. in J. Stat. Phys., 2009). Moreover, we show that given a target additive error ε>0, the computational effort of our method for these two models is (1/ε)O(1) both for the free energy and surface pressure values. In contrast, prior methods, such as the transfer matrix method, require exp ((1/ε)O(1)) computation effort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldous, D.: The ζ(2) limit in the random assignment problem. Random Struct. Algorithms 18, 381–418 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baxter, R.J.: Dimers on a rectangular lattice. J. Math Phys. 9, 650–654 (1968)

    Article  ADS  Google Scholar 

  3. Baxter, R.J.: Hard hexagons: exact solution. J. Phys. A 13, L61–L70 (1980)

    MathSciNet  ADS  Google Scholar 

  4. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, New York (1989)

    MATH  Google Scholar 

  5. Baxter, R.J.: Planar lattice gases with nearest-neighbor exclusion. Ann. Comb. 3, 191–203 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bayati, M., Gamarnik, D., Katz, D., Nair, C., Tetali, P.: Simple deterministic approximation algorithms for counting matchings. In: Proc. 39th Ann. Symposium on the Theory of Computing (STOC) (2007)

  7. Bertoin, J., Martinelli, F., Peres, Y.: Lectures on Probability Theory and Statistics. Ecole d’Ete de Probabilites de Saint-Flour, vol. XXVII. Springer, Berlin (1999)

    MATH  Google Scholar 

  8. Calkin, N.J., Wilf, H.S.: The number of independent sets in a grid graph. SIAM J. Discrete Math. 11, 54–60 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dobrushin, R.L.: Prescribing a system of random variables by the help of conditional distribution. Theory Probab. Appl. 15, 469–497 (1970)

    Article  Google Scholar 

  10. Friedland, S., Gurvits, L.: Lower bounds for partial matchings in regular bipartite graphs and applications to the monomer-dimer entropy. Comb. Probab. Comput. 17, 347–361 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fisher, M.E.: Statistical mechanics of dimers on a plane lattice. Phys. Rev. 124, 1664–1672 (1961)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Friedland, S., Krop, E., Lundow, P.H., Markström, K.: On the validations of the asymptotic matching conjectures. J. Stat. Phys. 133(3), 513–533 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Friedland, S., Lundow, P.H., Markström, K.: Theoretical and computational aspects of 1-vertex transfer matrices. math-ph/0603001

  14. Friedland, S., Peled, U.N.: Theory of computation of multidimensional entropy with an application to monomer-dimer entropy. Adv. Appl. Math. 34, 486–522 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Georgii, H.O.: Gibbs Measures and Phase Transitions. de Gruyter Studies in Mathematics, vol. 9. de Gruyter, Berlin (1988)

    MATH  Google Scholar 

  16. Gamarnik, D., Katz, D.: Correlation decay and deterministic FPTAS for counting list-colorings of a graph. In: Proceedings of 18th ACM-SIAM Symposium on Discrete Algorithms (SODA) (2007)

  17. Hammersley, J.M.: Existence theorems and Monte Carlo methods for the monomer-dimer problem. In: David, F.N. (ed.) Research Papers in Statistics: Festschrift for J. Neyman, pp. 125–146. Wiley, London (1966)

    Google Scholar 

  18. Hammersley, J.M.: An improved lower bound for the multidimensional dimer problem. Proc. Camb. Philos. Soc. 64, 455–463 (1966)

    Article  MathSciNet  Google Scholar 

  19. Heilman, O.J., Lieb, E.H.: Theory of monomer-dimer systems. Commun. Math. Phys. 25, 190–232 (1972)

    Article  ADS  Google Scholar 

  20. Huo, Y., Liang, H., Liu, S.Q., Bai, F.: Computing the monomer-dimer systems through matrix permanent. Phys. Rev. E 77 (2008)

  21. Hammersley, J.M., Menon, V.: A lower bound for the monomer-dimer problem. J. Inst. Math. Appl. 6, 341–364 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jerrum, M., Sinclair, A.: The Markov chain Monte Carlo method: an approach to approximate counting and integration. In: Hochbaum, D. (ed.) Approximation Algorithms for NP-Hard Problems. PWS, Boston (1997)

    Google Scholar 

  23. Kasteleyn, P.W.: The statistics of dimers on a lattice, I: the number of dimer arrangements on a quadratic lattice. Physica 27, 1209–1225 (1961)

    Article  ADS  Google Scholar 

  24. Kelly, F.: Stochastic models of computer communication systems. J. R. Stat. Soc. B 47(3), 379–395 (1985)

    MATH  Google Scholar 

  25. Kong, Y.: Exact asymptotics of monomer-dimer model on rectangular semi-infinite lattices. Phys. Rev. E 75, 051123 (2007)

    ADS  Google Scholar 

  26. Kenyon, C., Randall, D., Sinclair, A.: Approximating the number of monomer-dimer coverings of a lattice. J. Stat. Phys. 83, 637–659 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Mezard, M., Parisi, G.: On the solution of the random link matching problem. J. Phys. 48, 1451–1459 (1987)

    Google Scholar 

  28. Mezard, M., Parisi, G.: The cavity method at zero temperature. J. Stat. Phys. 111(1–2), 1–34 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Rivoire, O., Biroli, G., Martin, O.C., Mezard, M.: Glass models on Bethe lattices. Eur. Phys. J. B 37, 55–78 (2004)

    ADS  Google Scholar 

  30. Kenyon, R., Okounkov, A., Sheffield, S.: Dimers and amoebae. Ann. Math. 163, 1019–1056 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Simon, B.: The Statistical Mechanics of Lattice Gases, vol. I. Princeton Series in Physics. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  32. Spitzer, F.: Markov random fields on an infinite tree. Ann. Probab. 3, 387–398 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  33. Temperley, H.N.V., Fisher, M.E.: Dimer problem in statistical mechanics—an exact result. Philos. Mag. 6, 1061–1063 (1961)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. Weitz, D.: Counting independent sets up to the tree threshold. In: Proc. 38th Ann. Symposium on the Theory of Computing (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Gamarnik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamarnik, D., Katz, D. Sequential Cavity Method for Computing Free Energy and Surface Pressure. J Stat Phys 137, 205 (2009). https://doi.org/10.1007/s10955-009-9849-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-009-9849-3

Keywords

Navigation