Skip to main content
Log in

Observable Correlations in Two-Qubit States

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The total correlations in a bipartite quantum state are well quantified by the quantum mutual information, the amount of which is not necessarily fully extractable by local measurements. The observable correlations are the maximal correlations that can be extracted via local measurements, and have an intuitive interpretation as a measure of classical correlations. We evaluate the observable correlations for generic two-qubit states and obtain analytical expressions in some particular cases. The intricate and subtle relationships among the total, quantum and classical correlations are illustrated in terms of observable correlations. In the course, we also disprove an intuitive conjecture of Lindblad which states that the classical correlations account for at least half of the total correlations, or equivalently, correlations are more classical than quantum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adami, C., Cerf, N.J.: Von Neumann capacity of noisy quantum channels. Phys. Rev. A 56, 3470–3483 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  2. Barnett, S.M., Phoenix, S.J.D.: Entropy as a measure of quantum optical correlation. Phys. Rev. A 40, 2404–2409 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  3. Barnett, S.M., Phoenix, S.J.D.: Information theory, squeezing, and quantum correlations. Phys. Rev. A 44, 535–545 (1991)

    Article  ADS  Google Scholar 

  4. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bhatia, R.: Matrix Analysis. Springer, Berlin (1997)

    Google Scholar 

  6. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)

    Book  MATH  Google Scholar 

  7. Cramér, H.: Mathematical Methods of Statistics. Princeton University Press, Princeton (1974)

    Google Scholar 

  8. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  MATH  ADS  Google Scholar 

  9. Everett III, H.: The theory of the universal wavefunction. In: DeWitt, B.S., Graham, N. (eds.) The Many-Worlds Interpretation of Quantum Mechanics, pp. 3–140. Princeton University Press, Princeton (1973) (written in 1957, first publication herein)

    Google Scholar 

  10. Groisman, B., Popescu, S.A.: Winter, Quantum, classical, and total amount of correlations in a quantum state. Phys. Rev. A 72, 032317 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  11. Hall, M.J.W., Andersson, E., Brougham, T.: Maximum observable correlation for a bipartite quantum system. Phys. Rev. A 74, 062308 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  12. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899–6905 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Horodecki, M.: Entanglement measures. Quantum Inf. Comput. 1, 3–26 (2001)

    MATH  MathSciNet  Google Scholar 

  14. Li, N., Luo, S.: Total versus quantum correlations in quantum states. Phys. Rev. A 76, 032327 (2007)

    Article  ADS  Google Scholar 

  15. Lindblad, G.: Entropy, information and quantum measurements. Commun. Math. Phys. 33, 305–322 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  16. Lindblad, G.: Expectations and entropy inequalities for finite quantum systems. Commun. Math. Phys. 39, 111–119 (1974)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Lindblad, G.: Quantum entropy and quantum measurements. In: Bendjaballah, C., et al.(eds.) Quantum Aspects of Optical Communications. Lecture Notes in Physics, vol. 378, pp. 71–80. Springer, Berlin (1991)

    Chapter  Google Scholar 

  18. Nielsen, M., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  19. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2002)

    Article  ADS  Google Scholar 

  20. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic, Dordrecht (1998)

    Google Scholar 

  21. Schrödinger, E.: Discussion of probability relations between separated systems. Proc. Camb. Philos. Soc. 31, 555–563 (1935)

    Article  Google Scholar 

  22. Schumacher, B., Westmoreland, M.D.: Quantum mutual information and the one-time pad. Phys. Rev. A 74, 042305 (2006)

    Article  ADS  Google Scholar 

  23. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Urbana (1949)

    MATH  Google Scholar 

  24. Vedral, V.: The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74, 197–234 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  25. Wehrl, A.: General properties of entropy. Rev. Mod. Phys. 50, 221–260 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  26. Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)

    Article  ADS  Google Scholar 

  27. Wootters, W.K.: Entanglement of formation and concurrence. Quantum Inf. Comput. 1, 27–44 (2001)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunlong Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, S., Zhang, Q. Observable Correlations in Two-Qubit States. J Stat Phys 136, 165–177 (2009). https://doi.org/10.1007/s10955-009-9779-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9779-0

Keywords

Navigation