Skip to main content
Log in

Generalized approach to quantify correlations in bipartite quantum systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this work, we developed a general approach to the problem of detecting and quantifying different types of correlations in bipartite quantum systems. Our method is based on the use of distances between quantum states and processes. We rely upon the premise that total correlations can be separated into classical and quantum contributions due to their different nature. In addition, according to recently discussed criteria, we determined the requirements to be satisfied by distances in order to generate correlation measures physically well behaved. The proposed measures allow us to quantify quantum, classical and total correlations. Besides the well-known case of relative entropy, we introduce some additional examples of distances which can be used to build bona fide quantifiers of correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vedral, V.: Quantum entanglement. Nat. Phys. 10, 256 (2014)

    Article  Google Scholar 

  2. Yu, T., Eberly, J.H.: The end of an entanglement. Science 316, 555 (2007)

    Article  Google Scholar 

  3. Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  4. Plenio, M., Virmani, S.: An introduction to entanglement measures. Quantum Inf. Comput. 7, 1 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Brunner, N., Calvacanti, D., Pironio, F., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)

    Article  ADS  Google Scholar 

  6. Orieaux, A., D’Arrigo, A., Ferranti, G., Lo Franco, R., Benenti, G., Paladino, E., Falci, G., Sciarrino, F., Mataloni, P.: Experimental on-demand recovery of entanglement by local operations within non-Markovian dynamics. Sci. Rep. 5, 8575 (2015)

    Article  ADS  Google Scholar 

  7. Man, Z.-X., Xia, Y.-J., Lo Franco, R.: Cavity-based architecture to preserve quantum coherence and entanglement. Sci. Rep. 5, 13843 (2015)

    Article  ADS  Google Scholar 

  8. Dijkstra, A.G., Tanimura, Y.: Non-Markovian entanglement dynamics in the presence of system-bath coherence. Phys. Rev. Lett. 104, 250401 (2010)

    Article  ADS  Google Scholar 

  9. de Aolina, L., Melo, F., Davidovich, L.: Open-system dynamics of entanglement: a key issues review. Rep. Prog. Phys. 78, 042001 (2015)

    Article  ADS  Google Scholar 

  10. D’Arrigo, A., Lo Franco, R., Benenti, G., Paladino, E., Falci, G.: Hidden entanglement in the presence of random telegraph dephasing noise. Phys. Scr. T153, 014014 (2013)

    Article  ADS  Google Scholar 

  11. Xu, J.-S., Sun, K., Li, C.-F., Xu, X.-Y., Guo, G.-C., Andersson, E., Lo Franco, R., Compagno, G.: Experimental recovery of quantum correlations in absence of system-environment back-action. Nat. Commun. 4, 2851 (2013)

    Article  Google Scholar 

  12. D’Arrigo, A., Benenti, G., Lo Franco, R., Falci, G.: Hidden entanglement, system-environment information flow and non-Markovianity. Int. J. Quantum Inf. 12, 1461005 (2014)

    Article  MathSciNet  Google Scholar 

  13. Lo Franco, R.: Nonlocality threshold for entanglement under general dephasing evolutions: a case study. Quantum Inf. Process. 15, 2393 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  14. Rab, A.S., Polino, E., Man, Z.-X., An, N.B., Xia, Y.-J., Spagnolo, N., Lo Franco, R., Sciarrino, F.: Entanglement of photons in their dual wave-particle nature. Nat. Commun. 8, 915 (2017)

    Article  ADS  Google Scholar 

  15. Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672 (1998)

    Article  ADS  Google Scholar 

  16. Laflamme, R., Cory, D.G., Negrevergne, C., Viola, L.: NMR quantum information processing and entanglement. Quantum Inf. Comput. 2, 166 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Braunstein, S.L., Caves, C.M., Jozsa, R., Linden, N., Popescu, S., Schack, R.: Separability of very noisy mixed states and implications for NMR quantum computing. Phys. Rev. Lett. 83, 1054 (1999)

    Article  ADS  Google Scholar 

  18. Meyer, D.A.: Sophisticated quantum search without entanglement. Phys. Rev. Lett. 85, 2014 (2000)

    Article  ADS  Google Scholar 

  19. Datta, A., Flammia, S.T., Caves, C.M.: Entanglement and the power of one qubit. Phys. Rev. A 72, 042316 (2005)

    Article  ADS  Google Scholar 

  20. Datta, A., Vidal, G.: Role of entanglement and correlations in mixed-state quantum computation. Phys. Rev. A 75, 042310 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  21. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  22. Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)

    Article  ADS  Google Scholar 

  23. Silva, I.A., Souza, A.M., Bromley, T.R., Cianciaruso, M., Marx, R., Sarthour, R.S., Oliveira, I.S., Lo Franco, R., Glaser, S.J., deAzevedo, E.R., Soares-Pinto, D.O., Adesso, G.: Observation of time-invariant coherence in a nuclear magnetic resonance quantum simulator. Phys. Rev. Lett. 117, 160402 (2016)

    Article  ADS  Google Scholar 

  24. Aaronson, B., Lo Franco, R., Adesso, G.: Comparative investigation of the freezing phenomena for quantum correlations under nondissipative decoherence. Phys. Rev. A 88, 012120 (2013)

    Article  ADS  Google Scholar 

  25. Aaronson, B., Lo Franco, R., Compagno, G., Adesso, G.: Hierarchy and dynamics of trace distance correlations. New J. Phys. 15, 093022 (2013)

    Article  ADS  Google Scholar 

  26. Haikka, P., Johnson, T.H., Maniscalco, S.: Non-Markovianity of local dephasing channels and time-invariant discord. Phys. Rev. A 87, 010103(R) (2013)

    Article  ADS  Google Scholar 

  27. Cianciaruso, M., Bromley, T.R., Roga, W., Lo Franco, R., Adesso, G.: Universal freezing of quantum correlations within the geometric approach. Sci. Rep. 5, 10177 (2015)

    Article  ADS  Google Scholar 

  28. Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A., Wootters, W.K.: Mixed state entanglement and quantum error correction. Phys. Rev. A 59, 1070 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  29. Groisman, B., Popescu, S., Winter, A.: Quantum, classical, and total amount of correlations in a quantum state. Phys. Rev. A 72, 032317 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  30. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  31. Oppenheim, J., Horodecki, M., Horodecki, P., Horodecki, R.: Thermodynamical approach to quantifying quantum correlations. Phys. Rev. Lett. 89, 180402 (2002)

    Article  ADS  Google Scholar 

  32. Yang, D., Horodecki, M., Wang, Z.D.: An additive and operational entanglement measure: conditional entanglement of mutual information. Phys. Rev. Lett. 101, 140501 (2008)

    Article  ADS  Google Scholar 

  33. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  34. Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  35. Modi, K., Paterek, T., Son, W., Vedral, V., Williamson, M.: Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  36. Piani, M.: Problem with geometric discord. Phys. Rev. A 86, 034101 (2012)

    Article  ADS  Google Scholar 

  37. Tufarelli, T., MacLean, T.M., Girolami, D., Vasile, R., Adesso, G.: The geometric approach to quantum correlations: computability versus reliability. J. Phys. A Math. Theor. 46, 275308 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  38. Paula, F.M., Saguia, A., De Oliveira, T.R., Sarandy, M.S.: Overcoming ambiguities in classical and quantum correlation measures. EPL 108, 10003 (2014)

    Article  ADS  Google Scholar 

  39. Lang, M.D., Caves, C.M.: Quantum discord and the geometry of bell-diagonal states. Phys. Rev. Lett. 105, 150501 (2010)

    Article  ADS  Google Scholar 

  40. Cen, L.-X., Li, X.Q., Shao, J., Yan, Y.J.: Quantifying quantum discord and entanglement of formation via unified purifications. Phys. Rev. A 83, 054101 (2011)

    Article  ADS  Google Scholar 

  41. Adesso, G., Datta, A.: Quantum versus classical correlations in Gaussian states. Phys. Rev. Lett. 105, 030501 (2010); Giorda, P., Paris, M.G.A.: Gaussian Quantum Discord. ibid 105, 020503 (2010)

  42. Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010); Ali, M., Rau, A.R.P., Alber G.: ibid. 82, 069902(E) (2010)

  43. Shi, M., Yang, W., Jiang, F., Du, J.: Quantum discord of two-qubit rank-2 states. J. Phys. A Math. Theor. 44, 415304 (2011)

    Article  MathSciNet  Google Scholar 

  44. Chen, Q., Zhang, C., Yu, S., Yi, X.X., Oh, C.H.: Quantum discord of two-qubit X states. Phys. Rev. A 84, 042313 (2011)

    Article  ADS  Google Scholar 

  45. Lu, X.M., Ma, J., Xi, Z., Wang, X.: Optimal measurements to access classical correlations of two-qubit states. Phys. Rev. A 83, 012327 (2011)

    Article  ADS  Google Scholar 

  46. Girolami, D., Adesso, G.: Quantum discord for general two-qubit states: analytical progress. Phys. Rev. A 83, 052108 (2011)

    Article  ADS  Google Scholar 

  47. Li, B., Wang, Z.X., Fei, S.M.: Quantum discord and geometry for a class of two-qubit states. Phys. Rev. A 83, 022321 (2011)

    Article  ADS  Google Scholar 

  48. Huang, Y.: Computing quantum discord is NP-complete. New J. Phys. 16, 033027 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  49. Dakić, B., Vedral, V., Brukner, Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  50. Gessner, M., Laine, E.-M., Breuer, H.-P., Piilo, J.: Correlations in quantum states and the local creation of quantum discord. Phys. Rev. A 85, 052122 (2012)

    Article  ADS  Google Scholar 

  51. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  52. Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)

    Article  ADS  Google Scholar 

  53. Modi, K., Vedral, V.: Unification of quantum and classical correlations and quantumness measures. AIP Conf. Proc. 1384, 69 (2011)

    Article  ADS  Google Scholar 

  54. Brodutch, A., Modi, K.: Criteria for measures of quantum correlations. Quantum Inf. Comput. 12, 721–742 (2012)

    MathSciNet  MATH  Google Scholar 

  55. Adesso, G., Bromley, T.R., Cianciaruso, M.: Measures and applications of quantum correlations. J. Phys. A Math. Theor. 49, 473001 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  56. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  57. Hayashi, M.: Quantum Information: An Introduction. Springer, Berlin (2006)

    MATH  Google Scholar 

  58. Bengtsson, I., Zyczkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  59. Uhlmann, A.: The transition probability in the state space of a \(\star \)-algebra. Rep. Math. Phys. 9, 273 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  60. Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt 41, 2315 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  61. Bures, D.J.C.: An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite \(\text{ W }^*\)-algebras. Trans. Am. Math. Soc. 135, 199 (1969)

    MathSciNet  MATH  Google Scholar 

  62. Dodonov, V.V., Man’ko, O.V., Man’ko, V.I., Wunsche, A.: Hilbert–Schmidt distance and non-classicality of states in quantum optics. J. Mod. Opt. 47, 633 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  63. Luo, S., Zhang, Q.: Informational distance on quantum-state space. Phys. Rev. A 69, 032106 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  64. Majtey, A.P., Lamberti, P.W., Prato, D.P.: Jensen–Shannon divergence as a measure of distinguishability between mixed quantum states. Phys. Rev. A 72, 052310 (2005)

    Article  ADS  Google Scholar 

  65. Spehner, D., Illuminati, F., Orszag, M., Roga, W.: Geometric measures of quantum correlations with Bures and Hellinger distances. In: Fanchini, F., Soares Pinto, D., Adesso, G. (eds.) Lectures on General Quantum Correlations and Their Applications, Quantum Science and Technology. Springer, Cham (2017)

    MATH  Google Scholar 

Download references

Acknowledgements

D.B., A.P.M., P.W.L. and T.M.O acknowledge the Argentinian agency SeCyT-UNC and CONICET for financial support. D. B. has a fellowship from CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Majtey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bussandri, D.G., Majtey, A.P., Lamberti, P.W. et al. Generalized approach to quantify correlations in bipartite quantum systems. Quantum Inf Process 18, 57 (2019). https://doi.org/10.1007/s11128-018-2168-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2168-3

Keywords

Navigation