Skip to main content
Log in

Diffusion of Wave Packets in a Markov Random Potential

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the evolution of a tight binding wave packet propagating in a time dependent potential. If the potential evolves according to a stationary Markov process, we show that the square amplitude of the wave packet converges, after diffusive rescaling, to a solution of a heat equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 194. Springer, New York (2000). With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt. MR MR1721989 (2000i:47075)

    MATH  Google Scholar 

  2. Erdős, L., Salmhofer, M., Yau, H.-T.: Quantum diffusion for the Anderson model in the scaling limit. Ann. Henri Poincaré 8(4), 621–685 (2007). MR MR2333778 (2008g:82053)

    Article  Google Scholar 

  3. Erdős, L., Salmhofer, M., Yau, H.-T.: Quantum diffusion of the random Schrödinger evolution in the scaling limit. II. The recollision diagrams. Commun. Math. Phys. 271(1), 1–53 (2007). MR MR2283953 (2008h:82035)

    Article  ADS  Google Scholar 

  4. Erdős, L., Salmhofer, M., Yau, H.-T.: Quantum diffusion of the random Schrödinger evolution in the scaling limit. Acta Math. 200(2), 211–277 (2008). MR MR2413135

    Article  MathSciNet  Google Scholar 

  5. Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin (1995). Reprint of the 1980 edition. MR MR1335452 (96a:47025)

    MATH  Google Scholar 

  6. Mitra, P.P., Stark, J.B.: Nonlinear limits to the information capacity of optical fibre communications. Nature 411(6841), 1027–1030 (2001)

    Article  ADS  Google Scholar 

  7. Ovchinnikov, A.A., Érikhman, N.S.: Motion of a quantum particle in a stochastic medium. Sov. JETP 40, 733 (1974)

    ADS  Google Scholar 

  8. Pillet, C.-A.: Some results on the quantum dynamics of a particle in a Markovian potential. Commun. Math. Phys. 102(2), 237–254 (1985). MR MR820574 (88i:82015)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Tcheremchantsev, S.: Markovian Anderson model: bounds for the rate of propagation. Commun. Math. Phys. 187(2), 441–469 (1997). MR MR1463837 (98h:82029)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Tcheremchantsev, S.: Transport properties of Markovian Anderson model. Commun. Math. Phys. 196(1), 105–131 (1998). MR MR1643517 (99g:82075)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Fröhlich, J., De Roeck, W., Pizzo, A.: Diffusion for a quantum particle coupled to an array of independent thermal fields (2008). arXiv:0810.4537v1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Schenker.

Additional information

Dedicated to Jürg Fröhlich and Tom Spencer on the occasions of their 60th birthdays.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, Y., Schenker, J. Diffusion of Wave Packets in a Markov Random Potential. J Stat Phys 134, 1005–1022 (2009). https://doi.org/10.1007/s10955-009-9714-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9714-4

Keywords

Navigation