Skip to main content
Log in

Ground State Energy of the Low Density Hubbard Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We derive a lower bound on the ground state energy of the Hubbard model for given value of the total spin. In combination with the upper bound derived previously by Giuliani (J. Math. Phys. 48:023302, [2007]), our result proves that in the low density limit the leading order correction compared to the ground state energy of a non-interacting lattice Fermi gas is given by 8π a ϱ u ϱ d , where ϱ u(d) denotes the density of the spin-up (down) particles, and a is the scattering length of the contact interaction potential. This result extends previous work on the corresponding continuum model to the lattice case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bach, V., Poelchau, J.: Accuracy of the Hartree-Fock approximation for the Hubbard model. J. Math. Phys. 38, 2072–2083 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Dyson, F.J.: Ground state energy of a hard-sphere gas. Phys. Rev. 106, 20–26 (1957)

    Article  MATH  ADS  Google Scholar 

  3. Giuliani, A.: Ground state energy of the low density Hubbard model: An upper bound. J. Math. Phys. 48, 023302 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  4. Graf, G.M., Solovej, J.P.: A correlation estimate with applications to quantum systems with Coulomb interactions. Rev. Math. Phys. 6, 977–997 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Huang, K.: Statistical Mechanics, 2nd edn. Wiley, New York (1987)

    MATH  Google Scholar 

  6. Hundertmark, D., Simon, B.: Lieb-Thirring inequalities for Jacobi matrices. J. Approx. Theory 118, 106–130 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Li, P., Yau, S.-T.: On the Schrödinger equation and the eigenvalue problem. Commun. Math. Phys. 88, 309–318 (1983)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Lieb, E.H.: The Hubbard model: Some rigorous results and open problems. In: Iagolnitzer, D. (ed.) Proceedings of the XI’th International Congress of Mathematical Physics, Paris, 1994, pp. 392–412. International Press, Cambridge (1995)

    Google Scholar 

  9. Lieb, E.H., Seiringer, R., Solovej, J.P.: Ground state energy of the low density Fermi gas. Phys. Rev. A 71, 053605 (2005)

    Article  ADS  Google Scholar 

  10. Lieb, E.H., Seiringer, R., Solovej, J.P., Yngvason, J.: The Mathematics of the Bose Gas and Its Condensation. Oberwolfach Seminars, vol. 34. Birkhäuser, Basel (2005)

    MATH  Google Scholar 

  11. Lieb, E.H., Seiringer, R., Yngvason, J.: Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional. Phys. Rev. A 61, 043602 (2000)

    Article  ADS  Google Scholar 

  12. Lieb, E.H., Thirring, W.: Gravitational collapse in quantum mechanics with relativistic kinetic energy. Ann. Phys. (NY) 155, 494–512 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  13. Lieb, E.H., Yau, H.-T.: The stability and instability of relativistic matter. Commun. Math. Phys. 118, 177–213 (1988)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Lieb, E.H., Yngvason, J.: Ground state energy of the low density Bose gas. Phys. Rev. Lett. 80, 2504–2507 (1998)

    Article  ADS  Google Scholar 

  15. Lieb, E.H., Yngvason, J.: Ground state energy of a dilute two-dimensional Bose gas. J. Stat. Phys. 103, 509–526 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Martinsson, P.G., Rodin, G.: Asymptotic expansions of lattice Green’s functions. Proc. R. Soc. Lond. A 458, 2609–2622 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Seiringer, R.: The thermodynamic pressure of a dilute Fermi gas. Commun. Math. Phys. 261, 729–758 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Seiringer, R.: Free energy of a dilute Bose gas: lower bound. Commun. Math. Phys. 279, 595–636 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Tasaki, H.: The Hubbard model—An introduction and selected rigorous results. J. Phys.: Condens. Matter 10, 4353–4378 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Seiringer.

Additional information

© 2008 by the authors. This paper may by reproduced, in its entirety, for non-commercial purposes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seiringer, R., Yin, J. Ground State Energy of the Low Density Hubbard Model. J Stat Phys 131, 1139–1154 (2008). https://doi.org/10.1007/s10955-008-9527-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9527-x

Keywords

Navigation