Skip to main content
Log in

The stability and instability of relativistic matter

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the quantum mechanical many-body problem of electrons and fixed nuclei interacting via Coulomb forces, but with a relativistic form for the kinetic energy, namelyp 2/2m is replaced by (p 2 c 2+m 2 c 4)1/2mc 2. The electrons are allowed to haveq spin states (q=2 in nature). For one electron and one nucleus instability occurs ifzα>2/π, wherez is the nuclear charge and α is the fine structure constant. We prove that stability occurs in the many-body case ifzα≦2/π and α<1/(47q). For smallz, a better bound on α is also given. In the other direction we show that there is a critical α c (no greater than 128/15π) such that if α>α c then instability always occurs forall positivez (not necessarily integral) when the number of nuclei is large enough. Several other results of a technical nature are also given such as localization estimates and bounds for the relativistic kinetic energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baxter, J.R.: Inequalities for potentials of particle systems. Ill. J. Math.24, 645–652 (1980)

    Google Scholar 

  2. Chandrasekhar, S.: Phil. Mag.11, 592 (1931); Astro.J. 74, 81 (1931); Monthly Notices Roy. Astron. Soc.91, 456 (1931); Rev. Mod. Phys.56, 137 (1984)

    Google Scholar 

  3. Conlon, J.G.: The ground state energy of a classical gas. Commun. Math. Phys.94, 439–458 (1984)

    Google Scholar 

  4. Conlon, J.G., Lieb, E.H., Yau, H.-T.: TheN 7/5 law for charged bosons. Commun. Math. Phys.116, 417–448 (1988)

    Google Scholar 

  5. Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger operators. Berlin, Heidelberg, New York: Springer 1987

    Google Scholar 

  6. Daubechies, I.: An uncertainty principle for fermions with generalized kinetic energy. Commun. Math. Phys.90, 511–520 (1983)

    Google Scholar 

  7. Daubechies, I.: One electron molecules with relativistic kinetic energy: properties of the discrete spectrum. Commun. Math. Phys.94, 523–535 (1984)

    Google Scholar 

  8. Daubechies, I., Lieb, E.H.: One-electron relativistic molecules with Coulomb interaction. Commun. Math. Phys.90, 497–510 (1983)

    Google Scholar 

  9. Dyson, F.J.: Ground state energy of a finite system of charged particles. J. Math. Phys.8, 1538–1545 (1967)

    Google Scholar 

  10. Dyson, F.J., Lenard, A.: Stability of matter I and II. J. Math. Phys.8, 423–434 (1967); ibid9, 698–711 (1968). See also Lenard's Battelle lecture. In: Lecture Notes in Physics, vol. 23. Berlin, Heidelberg, New York: Springer 1973

    Google Scholar 

  11. Erdelyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Tables of integral transforms, Vol. 1. New York, Toronto, London: McGraw-Hill 1954, p. 75, 2.4 (35)

    Google Scholar 

  12. Federbush, P.: A new approach to the stability of matter problem. II. J. Math. Phys.16, 706–709 (1975)

    Google Scholar 

  13. Fefferman, C.: TheN-body problem in quantum mechanics. Commun. Pure Appl. Math. Suppl.39, S67-S109 (1986)

    Google Scholar 

  14. Fefferman, C., de la Llave, R.: Relativistic stability of matter. I. Rev. Math. Iberoamericana2, 119–215 (1986)

    Google Scholar 

  15. Fröhlich, J., Lieb, E.H., Loss, M.: Stability of Coulomb systems with magnetic fields. I. The one-electron atom. Commun. Math. Phys.104, 251–270 (1986)

    Google Scholar 

  16. Herbst, I.: Spectral theory of the operator (p 2+m 2)1/2ze 2/r. Commun. Math. Phys.53, 285–294 (1977); Errata ibid55, 316 (1977)

    Google Scholar 

  17. Kato, T.: Perturbation theory for linear operators. Berlin, Heidelberg, New York: Springer 1966. See remark 5.12, p. 307

    Google Scholar 

  18. Kovalenko, V., Perelmuter, M., Semenov, Ya.: Schrödinger operators withL l/2 w (ℝl) potentials. J. Math. Phys.22, 1033–1044 (1981)

    Google Scholar 

  19. Lieb, E.H.: Stability of matter. Rev. Mod. Phys.48, 553–569 (1976)

    Google Scholar 

  20. Lieb, E.H.: TheN 5/3 law for bosons. Phys. Lett.70, 71–73 (1979)

    Google Scholar 

  21. Lieb, E.H.: Density functionals for Coulomb systems. Int. J. Quant. Chem.24, 243–277 (1983)

    Google Scholar 

  22. Lieb, E.H.: On characteristic exponents in turbulence. Commun. Math. Phys.92, 473–480 (1984)

    Google Scholar 

  23. Lieb, E.H., Loss, M.: Stability of Coulomb systems with magnetic fields. II. The many electron atom and the one electron molecule. Commun. Math. Phys.104, 271–282 (1986)

    Google Scholar 

  24. Lieb, E., Simon, B.: Thomas Fermi theory of atoms, molecules and solids. Adv. Math.23, 22–116 (1977)

    Google Scholar 

  25. Lieb, E.H., Thirring, W.: Bound for the kinetic energy of fermions which proves the stability of matter. Phys. Rev. Lett.35, 687–689 (1975). Errata, ibid35, 1116 (1975); see also their article: Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. In: Studies in Mathematical Physics, Essays in honor of Valentine Bargmann. Lieb, E.H., Simon, B., Wightman, A.S. (eds.). Princeton, NJ: Princeton University Press 1976

    Google Scholar 

  26. Lieb, E.H., Thirring, W.: Gravitational collapse in quantum mechanics with relativistic kinetic energy. Ann. Phys. (NY)155, 494–512 (1984)

    Google Scholar 

  27. Lieb, E.H., Yau, H.-T.: The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Commun. Math. Phys.112, 147–174 (1987). See also Lieb, E.H. and Yau, H.-T.: A rigorous examination of the Chandrasekhar theory of stellar collapse. Astro. J.323, 140–144 (1987)

    Google Scholar 

  28. Loss, M., Yau, H.-T.: Stability of Coulomb systems with magnetic fields. III. Zero energy bound states of the Pauli operator. Commun. Math. Phys.104, 283–290 (1986)

    Google Scholar 

  29. Weder, R.: Spectral analysis of pseudodifferential operators. J. Funct. Anal.20, 319–337 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

Work partially supported by U.S. National Science Foundation grant PHY-85-15288-A02

The author thanks the Institute for Advanced Study for its hospitality and the U.S. National Science Foundation for support under grant DMS-8601978

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lieb, E.H., Yau, HT. The stability and instability of relativistic matter. Commun.Math. Phys. 118, 177–213 (1988). https://doi.org/10.1007/BF01218577

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01218577

Keywords

Navigation