Skip to main content
Log in

Wetting Transition on a One-Dimensional Disorder

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider wetting of a one-dimensional random walk on a half-line x≥0 in a short-ranged potential located at the origin x=0. We demonstrate explicitly how the presence of a quenched chemical disorder affects the pinning-depinning transition point. For small disorders we develop a perturbative technique which enables us to compute explicitly the averaged temperature (energy) of the pinning transition. For strong disorder we compute the transition point both numerically and using the renormalization group approach. Our consideration is based on the following idea: the random potential can be viewed as a periodic potential with the period n in the limit n→∞. The advantage of our approach stems from the ability to integrate exactly over all spatial degrees of freedoms in the model and to reduce the initial problem to the analysis of eigenvalues and eigenfunctions of some special non-Hermitian random matrix with disorder-dependent diagonal and constant off-diagonal coefficients. We show that even for strong disorder the shift of the averaged pinning point of the random walk in the ensemble of random realizations of substrate disorder is indistinguishable from the pinning point of the system with preaveraged (i.e. annealed) Boltzmann weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, D.B.: Phys. Rev. Lett. 44, 1165 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  2. Abraham, D.B.: In: Domb, C., Lebowitz, J.L. (eds.) Phase Transitions and Critical Phenomena, vol. 10. Academic Press, London (1986)

  3. Forgacs, G., Luck, J., Nieuwenhuizen, T.M., Orland, H.: Phys. Rev. Lett. 57, 2184 (1986)

    Article  ADS  Google Scholar 

  4. Forgacs, G., Luck, J., Nieuwenhuizen, T.M., Orland, H.: J. Stat. Phys. 51, 29 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Forgacs, G., Lipowsky, R., Nieuwenhuizen, T.M.: In: Domb, C., Lebowitz, J.L. (eds.) Phase Transitions and Critical Phenomena, vol. 14. Academic Press, London (1991)

  6. Grosberg, A.Y., Shakhnovich, E.I.: Sov. Phys. JETP 64, 493

  7. Grosberg, A.Y., Shakhnovich, E.I.: Sov. Phys. JETP 64, 1284

  8. Derrida, B., Hakim, V., Vannimenus, J.: J. Stat. Phys. 66, 1189 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Stepanow, S., Chudnovskiy, A.L.: J. Phys. A: Math. Gen. 35, 4229 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Tang, L.H., Chaté, H.: Phys. Rev. Lett. 86, 830 (2001)

    Article  ADS  Google Scholar 

  11. Alexander, K.: ArXiv: math.PR/0610008 (2006)

  12. Toninelli, F.L.: ArXiv: math-ph/0701063 (2007)

  13. Giacomin, G., Toninelli, F.L.: Phys. Rev. Lett. 96, 070602 (2006)

    Article  ADS  Google Scholar 

  14. Giacomin, G., Toninelli, F.L.: Commun. Math. Phys. 266, 1 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Naidenov, A., Nechaev, S.: J. Phys. A: Math. Gen. 34, 5625 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Madras, N., Whittington, S.G.: J. Phys. A: Math. Gen. 35, L427 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Burkhardt, T.W.: J. Phys. A: Math. Gen. 14, L63 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  18. Chalker, J.T.: J. Phys. A: Math. Gen. 14, 2431 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  19. Chui, S.T., Weeks, J.D.: Phys. Rev. B 23, 2438 (1981)

    Article  ADS  Google Scholar 

  20. van Leeuwen, J.M.J., Hilhorst, H.J.: Physica 107A, 319 (1981)

    ADS  Google Scholar 

  21. Nechaev, S., Zhang, Y.C.: Phys. Rev. Lett. 74, 1815 (1995)

    Article  ADS  Google Scholar 

  22. Swain, P.S., Parry, A.O.: J. Phys. A: Math. Gen. 30, 4597 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Burkhardt, T.W.: J. Phys. A: Math. Gen. 31, L549 (1998)

    Article  MATH  ADS  Google Scholar 

  24. Bauer, C., Dietrich, S.: Phys. Rev. E 60, 6919 (1999)

    Article  ADS  Google Scholar 

  25. Monthus, C., Garel, T., Orland, H.: Eur. Phys. J. B 17, 121 (2000)

    Article  ADS  Google Scholar 

  26. Gray, R.M.: Toeplitz and circulant matrices: A review. In: Foundations and Trends in Communications and Information Theory, vol. 2, pp. 155 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Nechaev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gangardt, D.M., Nechaev, S.K. Wetting Transition on a One-Dimensional Disorder. J Stat Phys 130, 483–502 (2008). https://doi.org/10.1007/s10955-007-9433-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9433-7

Keywords

Navigation