Skip to main content
Log in

The Depinning Transition in Presence of Disorder: A Toy Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We introduce a toy model, which represents a simplified version of the problem of the depinning transition in the limit of strong disorder. This toy model can be formulated as a simple renormalization transformation for the probability distribution of a single real variable. For this toy model, the critical line is known exactly in one particular case and it can be calculated perturbatively in the general case. One can also show that, at the transition, there is no fixed distribution accessible by renormalization which corresponds to a disordered fixed point. Instead, both our numerical and analytic approaches indicate a transition of infinite order (of the Berezinskii–Kosterlitz–Thouless type). We give numerical evidence that this infinite order transition persists for the problem of the depinning transition with disorder on the hierarchical lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aizenman, M., Wehr, J.: Rounding effects of quenched randomness on 1st-order phase transition. Commun. Math. Phys. 130, 489–528 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Alexander, K.S.: The effect of disorder on polymer depinning transitions. Commun. Math. Phys. 279, 117–146 (2008)

    Article  ADS  MATH  Google Scholar 

  3. Alexander, K.S., Sidoravicius, V.: Pinning of polymers and interfaces by random potentials. Ann. Appl. Prob. 16, 636–669 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alexander, K.S., Zygouras, N.: Quenched and annealed critical points in polymer pinning models. Commun Math. Phys. 291, 659–689 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Ares, S., Sanchez, A.: Modelling disorder: the cases of wetting and DNA denaturation. Eur. Phys. J. B 56, 253–258 (2007)

    Article  ADS  Google Scholar 

  6. Azbel, M.Y.: Long-range interaction and heterogeneity yield a different kind of critical phenomenon. Phys. Rev. E 68, 050901 (2003)

    Article  ADS  Google Scholar 

  7. Azbel, M.Y.: Giant non-universal critical index and fluctuations in DNA phase transition. Physica A - Stat. Mech. Appl. 321, 571–576 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Berger, Q., Toninelli, F.L.: Hierarchical pinning model in correlated random environment. Annales de l’Institut Henri Poincaré - Prob. Stat. 49, 781–816 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Bhattacharjee, S.M., Mukherji, S.: Directed polymers with random interaction—marginal relevance and novel criticality. Phys. Rev. Lett. 70, 49–52 (1993)

    Article  ADS  Google Scholar 

  10. Bhattacharjee, S.M., Mukherji, S.: Directed polymers with random interaction—An exactly solvable case. Phys. Rev. E 48, 3483–3496 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  11. Bolthausen, E., Caravenna, E., de Tiliere, B.: The quenched critical point of a diluted disordered polymer model. Stoch. Process. Appl. 119, 1479–1504 (2009)

    Article  MATH  Google Scholar 

  12. Bolthausen, E., Funaki, T., Otobe, T.: Concentration under scaling limits for weakly pinned Gaussian random walks. Prob. Theory Relat. Fields 143, 441–480 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Caravenna, F., Giacomin, G.: On constrained annealed bounds for pinning and wetting models. Electron. Commun. Prob. 10, 179–189 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Collet, P., Eckmann, J.P., Glaser, V., Martin, A.: Study of the iterations of a mapping associated to a spin-glass model. Commun. Math. Phys. 94, 353–370 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Cule, D., Hwa, T.: Denaturation of heterogeneous DNA. Phys. Rev. Lett. 79, 2375–2378 (1997)

    Article  ADS  Google Scholar 

  16. Coluzzi, B., Yeramian, E.: Numerical evidence for relevance of disorder in a Poland–Scheraga DNA denaturation model with self-avoidance: scaling behavior of average quantities. Eur. Phys. J. B 56, 349–365 (2007)

    Article  ADS  Google Scholar 

  17. Derrida, B., Giacomin, G., Lacoin, H., Toninelli, F.L.: Fractional moment bounds and disorder relevance for pinning models. Commun. Math. Phys. 287, 867–887 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Derrida, B., Hakim, V., Vannimenus, J.: Effect of disorder on 2-dimensional wetting. J. Stat. Phys. 66, 1189–1213 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Fisher, M.E.: Walks, walls, wetting and melting. J. Stat. Phys. 34, 684–689 (1984)

    ADS  Google Scholar 

  20. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, New York (2009)

    Book  MATH  Google Scholar 

  21. Forgacs, G., Luck, J.M., Nieuwenhuizen, T.M., Orland, H.: Wetting of a disordered substrate—Exact critical behavior in 2 dimension. Phys. Rev. Lett. 57, 2184–2187 (1986)

    Article  ADS  Google Scholar 

  22. Forgacs, G., Luck, J.M., Nieuwenhuizen, T.M., Orland, H.: Exact critical behavior of two dimensional wetting problems with quenched disorder. J. Stat. Phys. 51, 29–56 (1988)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Gangardt, D.M., Nechaev, S.K.: Wetting transition on a one-dimensional disorder. J. Stat. Phys. 130, 483–502 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Garel, T., Monthus, C., Orland, H.: A simple model for DNA denaturation. EuroPhys. Lett. 55, 132–138 (2001)

    Article  ADS  Google Scholar 

  25. Garel, T., Monthus, C.: Two-dimensional wetting with binary disorder: a numerical study of the loop statistics. Eur. Phys. J. B 46, 117–125 (2005)

    Article  ADS  Google Scholar 

  26. Giacomin, G.: Random Polymer Models. Imperial College Press, World Scientific, London (2007)

    Book  MATH  Google Scholar 

  27. Giacomin, G., Lacoin, H., Toninelli, F.L.: Disorder relevance at marginality and critical point shift. Annales de l’Institut Henri Poincaré—Prob. Stat. 47, 148–175 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Giacomin, G., Toninelli, F.L.: On the irrelevant disorder regime of pinning models. Ann. Prob. 37, 1841–1875 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Giacomin, G., Lacoin, H., Toninelli, F.L.: Marginal relevance of disorder for pinning models. Commun. Pure Appl. Math. 63, 233–265 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Giacomin, G., Lacoin, H., Toninelli, F.L.: Hierarchical pinning models, quadratic maps and quenched disorder. Prob. Theory Relat. Fields 147, 185–216 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Giacomin, G., Toninelli, F.L.: Smoothing of depinning transitions for directed polymers with quenched disorder. Phys. Rev. Lett. 96, 070602 (2006)

    Article  ADS  Google Scholar 

  32. Giacomin, G., Toninelli, F.L.: Smoothing effect of quenched disorder on polymer depinning transitions. Commun. Math. Phys. 266, 1–16 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Harris, A.B.: Effect of random defects on critical behavior of Ising model. J. Phys. C - Solid State Phys. 7, 1671–1692 (1974)

    Article  ADS  Google Scholar 

  34. Igloi, F., Monthus, C.: Strong disorder RG approach of random systems. Phys. Rep-Rev. Sect. Phys. Lett. 412, 277–431 (2005)

    MathSciNet  Google Scholar 

  35. Kafri, Y., Mukamel, D., Peliti, L.: Why is the DNA denaturation transition first order? Phys. Rev. Lett. 85, 4988–4991 (2000)

    Article  ADS  Google Scholar 

  36. Kafri, Y., Mukamel, D.: Griffiths singularities in unbinding of strongly disordered polymers. Phys. Rev. Lett. 91, 038103 (2003)

    Article  Google Scholar 

  37. Kosterlitz, J.M., Thouless, D.J.: Ordering, metastability and phase-transitions in 2 dimensional systems. J. Phys. C 6, 1181–1203 (1973)

    Article  ADS  Google Scholar 

  38. Kosterlitz, J.M., Thouless, D.J.: Early work on defect driven phase transitions. In: Jose Jorge, V. (ed.) 40 Years of Berezinskii-Kosterlitz-Thouless Theory, pp. 1–67. World Scientific Publishing Co. Pte. Ltd., Singapore (2013)

  39. Kunz, H., Livi, R.: DNA denaturation and wetting in the presence of disorder. Eur. Phys. Lett. 99, 30001 (2012)

    Article  ADS  Google Scholar 

  40. Lacoin, H.: Hierarchical pinning model with site disorder: disorder is marginally relevant. Prob. Theory Relat. Fields 148, 159–175 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  41. Lacoin, H.: The martingale approach to disorder irrelevance for pinning models. Electron. Commun. Prob. 15, 418–427 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  42. Lacoin, H., Moreno, G.: Directed polymers on hierarchical lattices with site disorder. Stoch. Process. Appl. 120, 467–493 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  43. Lacoin, H., Toninelli, F.L.: A smoothing inequality for hierarchical pinning models. Prog. Prob. 62, 271–278 (2009)

    MathSciNet  Google Scholar 

  44. Lubensky, D.K., Nelson, D.R.: Single molecule statistics and the polynucleotide unzipping transition. Phys. Rev. E 65, 031917 (2002)

    Article  ADS  Google Scholar 

  45. Monthus, C.: Random walks and polymers in the presence of quenched disorder. Lett. Math. Phys. 78, 207–233 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  46. Monthus, C., Garel, T.: Distribution of pseudo-critical temperatures and lack of self-averaging in disordered Poland–Scheraga models with different loop exponents. Eur. Phys. J. B 48, 393–403 (2005)

    Article  ADS  Google Scholar 

  47. Monthus, C., Garel, T.: Multifractal statistics of the local order parameter at random critical points: application to wetting transitions with disorder. Phys. Rev. E 76, 021114 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  48. Monthus, C., Garel, T.: Critical points of quadratic renormalizations of random variables and phase transitions of disordered polymer models on diamond lattices. Phys. Rev. E 77, 021132 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  49. Poland, D., Scheraga, H.A.: Occurrence of a phase transition in nucleic acid models. J. Chem. Phys. 45, 1464–1469 (1966)

    Article  ADS  Google Scholar 

  50. Richard, C., Guttmann, A.J.: Poland–Scheraga models and the DNA denaturation transition. J. Stat. Phys. 115, 943–965 (2004)

    Article  MathSciNet  Google Scholar 

  51. Tang, L.H., Chaté, H.: Rare-event induced binding transition of heteropolymers. Phys. Rev. Lett. 86, 830–833 (2001)

    Article  ADS  Google Scholar 

  52. Toninelli, F.L.: A replica-coupling approach to disordered pinning models. Commun. Math. Phys. 280, 389–401 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  53. Toninelli, F.L.: Disordered pinning models and copolymers: beyond annealed bounds. Ann. Appl. Prob. 18, 1569–1587 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank J.P. Eckmann, G. Giacomin, L.H. Tang and F. Werner for useful and stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Derrida.

Appendices

Appendix 1: The Large \(a\) Limit of the Toy Model (6)

In this appendix we try to explain the \(1/a\) dependence of \(\lambda _c\) that we observed for large \(a\) in Table 1.

Consider a distribution \(P_0(X)\) characterized by its first two moments

$$\begin{aligned} \int P_0(X) X d X = \mu ; \int P_0(X) X^2 d X = \mu ^2 + \sigma . \end{aligned}$$

The parameters \(\mu \) and \(\sigma \) change if one varies the initial distribution \(P_0(X)\). Let us call \(\mu _c(a, \sigma )\) the critical value of \(\mu \) at the depinning transition (8).

By the simple change of scale \( a\rightarrow a', \mu \rightarrow a' \mu / a, \sigma \rightarrow a'^2 \sigma / a^2\) it is clear that \(\mu _c(a,\sigma )\) should be of the form

$$\begin{aligned} \mu _c(a, \sigma ) = a \ F\left( {\sigma \over a^2} \right) . \end{aligned}$$

On the other hand, if \(a\) is very large compared to \(\mu \) and \(\sqrt{\sigma }\), for many iterations of the renormalization, the distribution is renormalized as if \(a\) was infinite: after \(n\) steps, one has \(\mu _n \simeq 2^n \mu \) and \(\sigma _n \simeq 2^n \sigma \). Therefore for \(\mu \ll a\) and \(\sigma \ll a^2\) one has

$$\begin{aligned} \mu _c(a, \sigma ) \simeq \sigma G(a). \end{aligned}$$

Combining these two equations leads to the result that

$$\begin{aligned} \mu _c(a,\sigma ) \sim {\sigma \over a}. \end{aligned}$$

For the particular case of the binary distribution (9) one has \(\mu = 2 \lambda -1\) and therefore \(\lambda _c -1/2 \sim 1/a\) as observed in Table 1.

Appendix 2: Absence of Critical Fixed Distributions of the Map (22)

In this appendix, we show for \(a\) an integer, that the only fixed distributions accessible by the renormalization group (19) are \(H(z)=0\) (which corresponds to the pinned phase), \(H(z)=1\) (which corresponds to the unpinned phase) and \(H(z)=z^a\) (which corresponds to the critical point of the pure system).

We have seen that in terms of the generating function \(H_n(z)\), the renormalization transformation (6) can be written as

$$\begin{aligned} H_{n+1}(z) = {H_n^2(z) - Q_n(z) \over z^a} + Q_n(1) \end{aligned}$$
(49)

where \(Q_n(z)\) is the polynomial of degree \(a-1\) obtained by keeping the first \(a\) coefficients of the expansion of \(H_n^2(z)\) around \(z=0\) :

$$\begin{aligned} \text {If } \quad H_n^2(z) = \sum _{k=0}^\infty \beta _n^{(k)} \ z^k \quad \quad \text {then } \quad Q_n(z) = \sum _{k=0}^{a-1} \beta _n^{(k)} \ z^k. \end{aligned}$$
(50)

It is clear that if the \(p_n^{(k)}\)’s in (19, 21) are non-negative then the \(\beta ^{(k)}\)’s are also non-negative. If one looks for a fixed distribution (i.e. for a fixed point \(H_*(z)\) of the map (22)) one gets

$$\begin{aligned} H_*(z) = {z^a \pm \sqrt{\Delta (z)} \over 2} \end{aligned}$$
(51)

with

$$\begin{aligned} \Delta (z)= z^{2 a} + 4 Q_*(z) - 4 z^a Q_*(1). \end{aligned}$$
(52)

Let us first observe that \(\Delta (z)\) cannot vanish on the positive real axis:

  • For \(z \le 1\), by writing

    $$\begin{aligned} \Delta (z) = z^{2 a} + 4 \sum _{k=0}^{a-1} \beta _*^{(k)} (z^k - z^a) \end{aligned}$$

    it is obvious that \(\Delta (z) >0\) .

  • For \( z \ge 1\), using the fact that

    $$\begin{aligned} \sum _{k=-a}^\infty p^{(k]}=1= \sum _{k=0}^\infty \beta ^{(k)} \end{aligned}$$

    one can rewrite \(\Delta (z)\) as

    $$\begin{aligned} \Delta (z)= z^{2 a} \sum _{k=a}^\infty \beta _*^{(k)} + \sum _{k=0}^{a-1} \beta _*^{(k)}(z^a-2)^2 + 4 \sum _{k=0}^{a-1} \beta _*^{(k)}( z^k - 1) \end{aligned}$$

and in this case too, \(\Delta (z)\) is strictly positive on the whole positive axis. We are now going to prove that \(\sqrt{\Delta (z)}\) has to be a polynomial.

If \(\sqrt{\Delta (z)}\) was not a polynomial, then, because \(\Delta (z)\) does not vanish on the positive real axis, the singularity of \(H_*(z)\) closest to \(z=0\) would not be on the positive real axis. It is however known (Pringsheim’s theorem [20]) that a series with positive coefficients has a singularity at the intersection of the positive real axis and its circle of convergence of the series. Therefore, the coefficients of \(H_*(z)\) would not be all positive.

Therefore \(\sqrt{\Delta (z)}\) has to be a polynomial. From (52) and the fact that \(Q_*(z)\) is of degree \(a-1\), the only possibilities are \(Q_*(z)=Q_*(1)^2\) which implies either \(Q_*(z)=0\) or \(Q_*(z)=1\). Thus (52) implies that \(\Delta (z) = z^{2 a} \) or \(\Delta (z) = (z^{ a}-2)^2\) which gives \(H_*(z)=0\), \(z^a\) or \(1\).

Appendix 3: The Extra Critical Fixed Point of the Truncated Transformation (27)

In this appendix we show that if one truncates the transformation as in (6) by (27), there appears a new critical fixed distribution. This new fixed point disappears in the \(a' \rightarrow \infty \) limit.

For the sake of simplicity, let us limit the discussion to the case \(a=1\) and to a large integer value of \(a'\). For integer \(a \) and \(a'\) the transformation (19) remains the same for \(k < a'\). The only change is for \(k=a'\) where it becomes

$$\begin{aligned} p_{n+1}^{(a')} = \sum _{q_1=0}^{a'} \quad \sum _{q_2=a'-q_1}^{a'} \quad p_n^{(q_1)} \ p_n^{(q_2)}. \end{aligned}$$
(53)

Because the transformation for \( k < a'\) does not depend on \(a'\), the recursion relation of the generating function \(H_n(z)\)

$$\begin{aligned} H_n(z) = \sum _{k=-a}^{a'} p_n^{(k)} \ z^{k+a} \end{aligned}$$
(54)

is the same as (24) up to terms of order \(z^{a+a'-1}\)

$$\begin{aligned} H_{n+1}(z)= {H_n(z)^2 - H_n(0)^2 \over z}+ H_n(0)^2 + O\left( z^{a+a'-1} \right) . \end{aligned}$$
(55)

Therefore a fixed point of (55) should be of the form

$$\begin{aligned} H_*(z) = {z \over 2} + H(0)\sqrt{1 - z + {z^2 \over 4 H(0)^2}} + O\left( z^{a+a'} \right) . \end{aligned}$$

For \(k < a+a'-1\) (here \(a=1\)) one gets for the weights of the fixed distribution

$$\begin{aligned} p_*^{(k)} = {1 \over 2 \pi i} \oint {dz \over z^{k+2}} \left[ {z \over 2} + H(0) \sqrt{1 - z + {z^2 \over 4 H(0)^2}}\right] \end{aligned}$$

where the integration contour is a small circle around the origin.

For \(H(0)\) close to \(1\) this gives

$$\begin{aligned} p_*^{(k)} \simeq {1 \over 2^{k-1}} {1- H(0) \over \pi } \int \limits _0^1 dy \sqrt{1 - y^2} \ \cos \left( k \sqrt{2 (1 - H(0))} y \right) . \end{aligned}$$

If \(q\) is the first zero of \( \int \limits _0^1 dy \sqrt{1 - y^2} \ \cos ( q y )\) all the \(p_*^{(k)}\) are positive as long as \(k < q/\sqrt{2 (1- H(0)}\). Adjusting the boundary condition at \(k=a'\) selects one particular value \(H(0)\) which should be such that

$$\begin{aligned} 1- H(0) \simeq {q^2 \over 2 a'^2}. \end{aligned}$$

In the limit \(a' \rightarrow \infty \), obviously \(H(0) \rightarrow 1\) and this extra fixed point merges with the fixed point \(H_*(z)=1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derrida, B., Retaux, M. The Depinning Transition in Presence of Disorder: A Toy Model. J Stat Phys 156, 268–290 (2014). https://doi.org/10.1007/s10955-014-1006-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-1006-y

Keywords

Navigation