Skip to main content
Log in

Integral Representation of the Linear Boltzmann Operator for Granular Gas Dynamics with Applications

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate the properties of the collision operator Q associated to the linear Boltzmann equation for dissipative hard-spheres arising in granular gas dynamics. We establish that, as in the case of non-dissipative interactions, the gain collision operator is an integral operator whose kernel is made explicit. One deduces from this result a complete picture of the spectrum of Q in an Hilbert space setting, generalizing results from T. Carleman (Publications Scientifiques de l’Institut Mittag-Leffler, vol. 2, 1957) to granular gases. In the same way, we obtain from this integral representation of Q + that the semigroup in L 1(ℝ3×ℝ3,dx dv) associated to the linear Boltzmann equation for dissipative hard spheres is honest generalizing known results from Arlotti (Acta Appl. Math. 23:129–144, 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arlotti, L.: A perturbation theorem for positive contraction semigroups on L 1-spaces with applications to transport equations and Kolmogorov’s differential equations. Acta Appl. Math. 23, 129–144 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arlotti, L., Lods, B.: Substochastic semigroups for transport equations with conservative boundary conditions. J. Evol. Equ. 5, 485–508 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Banasiak, J., Arlotti, L.: Perturbations of Positive Semigroups with Applications. Springer, New York (2005)

    Google Scholar 

  4. Brilliantov, N.V., Pöschel, T.: Kinetic Theory of Granular Gases. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  5. Brull, S., Pareschi, L.: Dissipative hydrodynamic models for the diffusion of impurities in a gas. Appl. Math. Lett. 19, 516–521 (2006)

    Article  MathSciNet  Google Scholar 

  6. Carleman, T.: Problèmes mathématiques dans la théorie cinétique des gaz. In: Publications Scientifiques de l’Institut Mittag-Leffler, vol. 2 (1957)

  7. Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Springer, New York (1994)

    MATH  Google Scholar 

  8. Ernst, M.H., Brito, R.: Scaling solutions of inelastic Boltzmann equation with over-populated high energy tails. J. Stat. Phys. 109, 407–432 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ferrari, E., Pareschi, L.: Modelling and numerical methods for the diffusion of impurities in a gas. Int. J. Numer. Method. Fluids (2007, to appear)

  10. Garzò, V.: Kinetic theory for binary granular mixtures at low-density. Preprint ArXiv:0704.1211 (2007)

    Google Scholar 

  11. Garzò, V., Montanero, J.M.: Diffusion of impurities in a granular gas. Phys. Rev. E 69 (2004)

  12. Grad, H.: Asymptotic theory of the Boltzmann equation. II. Rarefied gas dynamics. In: Proc. 3rd International Symposium Palais de l’UNESCO, Paris, 1962, vol. I, pp. 26–59 (1963)

  13. Kuscer, I., Williams, M.M.R.: Relaxation constants of a uniform hard-sphere gas. Phys. Fluids 10, 1922–1927 (1967)

    Article  Google Scholar 

  14. Lods, B., Toscani, G.: The dissipative linear Boltzmann equation for hard spheres. J. Stat. Phys. 117, 635–664 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Molinet, F.A.: Existence, uniqueness and properties of the solutions of the Boltzmann kinetic equation for a weakly ionized gas. J. Math. Phys. 18, 984–996 (1977)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Martin, P.A., Piaceski, J.: Thermalization of a particle by dissipative collisions. Europhys. Lett. 46, 613–616 (1999)

    Article  ADS  Google Scholar 

  17. Mischler, S., Mouhot, C.: Cooling process for inelastic Boltzmann equations for hard spheres, Part II: Self-similar solutions and tail behavior. J. Stat. Phys. 124, 703–746 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mouhot, C., Strain, R.: Spectral gap and coercivity estimates for the linearized Boltzmann collision operator without angular cutoff. J. Math. Pures Appl. 87, 515–535 (2007)

    MATH  MathSciNet  Google Scholar 

  19. Mouhot, C., Toscani, G.: Relaxation rate and diffusive limit for inelastic scattering Boltzmann models. Work in progress

  20. Pettersson, R.: On solutions to the linear Boltzmann equation for granular gases. Transp. Theory Stat. Phys. 33, 527–543 (2004)

    Article  MathSciNet  Google Scholar 

  21. Poupaud, F.: Runaway phenomena and fluid approximation under high fields in semiconductor kinetic theory. Z. Angew. Math. Mech. 72, 359–372 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Spiga, G., Toscani, G.: The dissipative linear Boltzmann equation. Appl. Math. Lett. 17, 255–301 (2004)

    Article  MathSciNet  Google Scholar 

  23. Villani, C.: Mathematics of granular materials. J. Stat. Phys. 124, 781–822 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Voigt, J.: Stochastic operators, information, and entropy. Commun. Math. Phys. 81, 31–38 (1981)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Voigt, J.: On substochastic C 0-semigroups and their generators. Transp. Theory Stat. Phys. 16, 453–466 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertrand Lods.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arlotti, L., Lods, B. Integral Representation of the Linear Boltzmann Operator for Granular Gas Dynamics with Applications. J Stat Phys 129, 517–536 (2007). https://doi.org/10.1007/s10955-007-9402-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9402-1

Keywords

Navigation