Skip to main content
Log in

From Newton’s Law to the Linear Boltzmann Equation Without Cut-Off

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We provide a rigorous derivation of the linear Boltzmann equation without cut-off starting from a system of particles interacting via a potential with infinite range as the number of particles N goes to infinity under the Boltzmann–Grad scaling. More particularly, we will describe the motion of a tagged particle in a gas close to global equilibrium. The main difficulty in our context is that, due to the infinite range of the potential, a non-integrable singularity appears in the angular collision kernel, making no longer valid the single-use of Lanford’s strategy. Our proof relies then on a combination of Lanford’s strategy, of tools developed recently by Bodineau, Gallagher and Saint-Raymond to study the collision process, and of new duality arguments to study the additional terms associated with the long-range interaction, leading to some explicit weak estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandre R.: Remarks on 3D Boltzmann linear equation without cutoff. Transp. Theory Stat. Phys. 28(5), 433–473 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Alexandre R., Morimoto Y., Ukai S., Xu C.-J., Yang T.: Global existence and full regularity of the Boltzmann equation without angular cutoff. Commun. Math. Phys. 304(2), 513–581 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Alexandre R., Morimoto Y., Ukai S., Xu C.-J., Yang T.: The Boltzmann equation without angular cutoff in the whole space: II. Global existence for hard potential. Anal. Appl. 09(02), 113–134 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alexandre R., Morimoto Y., Ukai S., Xu C.-J., Yang T.: The Boltzmann equation without angular cutoff in the whole space: I. Global existence for soft potential. J. Funct. Anal. 262(3), 915–1010 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alexandre R., Villani C.: On the Boltzmann equation for long-range interactions. Commun. Pure Appl. Math. 55, 30–70 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bobylev A.V., Pulvirenti M., Saffirio C.: From particle systems to the Landau equation: a consistency result. Commun. Math. Phys. 319(3), 683–702 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bodineau T., Gallagher I., Saint-Raymond L.: From hard sphere dynamics to the Stokes–Fourier equations: an L 2 analysis of the Boltzmann–Grad limit. Comptes Rendus Math. 353(7), 623–627 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bodineau T., Gallagher I., Saint-Raymond L.: The Brownian motion as the limit of a deterministic system of hard-spheres. Invent. Math. 203(2), 493–553 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Cercignani C.: The Boltzmann Equation and Its Application. Springer, New York (1988)

    Book  MATH  Google Scholar 

  10. Desvillettes L., Pulvirenti M.: The linear Boltzmann equation for long-range forces: a derivation from particles system. Math. Models Methods Appl. Sci. 09(08), 1123–1145 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gallagher, I., Saint-Raymond, L., Texier, B.: From Newton to Boltzmann: Hard Spheres and Short-range Potentials. Zurich Lectures in Advanced Mathematics. European Mathematical Society, Zurich (2013)

  12. Grad H.: Principles of the kinetic theory of gases. Handb. Phys. 12, 205–294 (1958)

    ADS  MathSciNet  Google Scholar 

  13. Gressman P.T., Strain R.M., Kadison R.V.: Global classical solutions of the Boltzmann equation with long-range interactions. Proc. Natl. Acad. Sci. USA 107(13), 5744–5749 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. King, F.: BBGKY hierarchy for positive potentials. Ph.D. thesis, Department of Mathematics, Univercity of California, Berkeley (1975)

  15. Lanford, O.E.: Time evolution of large classical systems. In: Moser, J. (ed.) Dynamical Systems, Theory and Applications, Volume 38 of Lecture Notes in Physics, pp. 1–111. Springer, Berlin (2010)

  16. Lebowitz J.L., Spohn H.: Steady state self-diffusion at low density. J. Stat. Phys. 29(1), 39–55 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Pulvirenti M., Saffirio C., Simonella S.: On the validity of the Boltzmann equation for short range potentials. Rev. Math. Phys. 26(02), 1450001 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Spohn H.: Large scale dynamics of interacting particles. Springer, New York (2012)

    MATH  Google Scholar 

  19. van Beijeren H., Lanford O.E., Lebowitz J.L., Spohn H.: Equilibrium time correlation functions in the low-density limit. J. Stat. Phys. 22(2), 237–257 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Ayi.

Additional information

Communicated by C. Mouhot

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayi, N. From Newton’s Law to the Linear Boltzmann Equation Without Cut-Off. Commun. Math. Phys. 350, 1219–1274 (2017). https://doi.org/10.1007/s00220-016-2821-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2821-6

Navigation