Skip to main content
Log in

On the Rate of Convergence to Equilibrium of the Andersen Thermostat in Molecular Dynamics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

It has been shown in E and Li (Comm. Pure. Appl. Math., 2007, in press) that the Andersen dynamics is uniformly ergodic. Exponential convergence to the invariant measure is established with an error bound of the form

$$\mathit{const}\cdot\exp{(-\mathit{const}\cdot\kappa(\nu)\nu^{2N}t)},$$

where N is the number of particles, ν is the collision frequency and κ(ν)→const as ν→0. In this article we study the dependence on ν of the rate of convergence to equilibrium. In the one dimension and one particle case, we improve the error bound to be

$$\mathit{const}\cdot\exp{(-\mathit{const}\cdot\kappa(\nu)\nu t)}.$$

In the d-dimension N-particle free-streaming case, it is proved that the optimal error bound is

$$\mathit{const}\cdot\exp{\biggl(-\mathit{const}\cdot\frac{\nu}{N}t\biggr)}.$$

It is also shown that as ν→∞, on the diffusive time scale, the Andersen dynamics converges to a Smoluchowski equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen, H.C.: Molecular dynamics at constant pressure and/or temperature. J. Chem. Phys. 72, 2384–2393 (1980)

    Article  ADS  Google Scholar 

  2. Bond, S.D., Leimkuhler, B.J., Laird, B.B.: The Nosé-Poincaré method for constant temperature molecular dynamics. J. Comput. Phys. 151, 114–134 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., Haak, J.R.: Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81(8), 3684–3690 (1984)

    Article  ADS  Google Scholar 

  4. Cancès, E., Legoll, F., Stoltz, G.: Theoretical and numerical comparison of some sampling methods for molecular dynamics, IMA preprint. Math. Model. Numer. Anal. 41(2), 351–389 (2007)

    Article  Google Scholar 

  5. Duane, S., Kennedy, A.D., Pendleton, B.J., Roweth, D.: Hybrid Monte Carlo. Phys. Lett. B 195(2), 216–222 (1987)

    ADS  Google Scholar 

  6. E, W., Li, D.: The Andersen thermostat in molecular dynamics. Comm. Pure. Appl. Math. (2007, in press). doi: 10.1002/cpa.20198

  7. Frenkel, D., Smit, B.: Understanding Molecular Simulation, from Algorithms to Applications, 2nd ed. Academic Press, San Diego (2002)

    Google Scholar 

  8. Grest, G.S., Kremer, K.: Molecular-dynamics simulation for polymers in the presence of a heat bath. Phys. Rev. A 33(5), 3628–3631 (1986)

    Article  ADS  Google Scholar 

  9. Hoover, W.G.: Equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985)

    Article  ADS  Google Scholar 

  10. Hoover, W.G.: Constant pressure equations of motion. Phys. Rev. A 34, 2499–2500 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  11. Legoll, F., Luskin, M., Moeckel, R.: Non-ergodicity of the Nose-Hoover thermostatted harmonic oscillator. Arch. Ration. Mech. Anal. 184(3), 449–463 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Leimkuhler, B.J., Sweet, C.R.: A Hamiltonian formulation for recursive multiple thermostats in a common timescale. SIAM J. Appl. Dyn. Syst. 4(1), 187–216 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lindvall, T.: Lectures on the Coupling Method. Wiley Series in Probability and Mathematical Statistics. Wiley, New York (1992)

    Google Scholar 

  14. Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability. Springer, Berlin (1993)

    MATH  Google Scholar 

  15. Martyna, G.J., Klein, M.L., Tuckerman, M.E.: Nosé-Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys. 97, 2635–2645 (1992)

    Article  ADS  Google Scholar 

  16. Mattingly, J.C., Stuart, A.M., Higham, D.J.: Ergodicity for SDEs and approximations: Locally Lipschitz vector fields and degerate noise. Stoch. Process. Appl. 101, 185–232 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Nikunen, P., Karttunen, M., Vattulainen, I.: How would you integrate the equations of motion in dissipative particle dynamics simulations? Comput. Phys. Commum. 153(3), 407–423 (2003)

    Article  ADS  Google Scholar 

  18. Nosé, S.: A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984)

    Article  ADS  Google Scholar 

  19. Nosé, S.: A unified formulation of the constant temperature molecular dynamics method. J. Chem. Phys. 81, 511–519 (1985)

    Article  ADS  Google Scholar 

  20. Papanicolaou, G.C.: Some probabilistic problems and methods in singular perturbations. Rocky Mt. Math. J. 6, 653–674 (1976)

    MATH  MathSciNet  Google Scholar 

  21. Schütte, C.: Conformational dynamics: Modelling, theory, algorithm, and application to biomolecules. Habilitation Thesis, Free University Berlin (1999)

  22. Shardlow, T., Yan, Y.: Geometric ergodicity for dissipative particle dynamics. Stoch. Dyn. 6(1), 123–154 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Soddemann, T., Dünweg, B., Kremer, K.: Dissipative particle dynamics: A useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations. Phys. Rev. E 68(4), 046702 (2003)

    Article  ADS  Google Scholar 

  24. Talay, D.: Stochastic Hamiltonian dissipative systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme. Markov Process. Relat. Fields 8, 163–198 (2002)

    MATH  MathSciNet  Google Scholar 

  25. Tuckerman, M.E., Liu, Y., Ciccotti, G., Martyna, G.J.: Non-Hamiltonian molecular dynamics: Generalizing Hamilton phase space principles to non-Hamiltonaian systems. J. Chem. Phys. 116, 1678 (2001)

    Article  ADS  Google Scholar 

  26. Tuckerman, M.E., Martyna, G.J.: Understanding modern molecular dynamics: Techniques and applications. J. Phys. Chem. B 104, 159–178 (2000)

    Google Scholar 

  27. Tropper, M.M.: Ergodic properties and quasideterministic properties of finite-dimensional stochastic systems. J. Stat. Phys. 17, 491–509 (1977)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D. On the Rate of Convergence to Equilibrium of the Andersen Thermostat in Molecular Dynamics. J Stat Phys 129, 265–287 (2007). https://doi.org/10.1007/s10955-007-9391-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9391-0

Keywords

Navigation