Skip to main content
Log in

A Weak Formulation of the Boltzmann Equation Based on the Fourier Transform

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this article we present an alternative formulation of the spatially homogeneous Boltzmann equation. Rewriting the weak form of the equation with shifted test functions and using Fourier techniques, it turns out that the transformed problem contains only a three-fold integral.

Explicit formulas for the transformed collision kernel are presented in the case of VHS models for hard and soft potentials. For isotropic Maxwellian molecules, a classical result by Bobylev is recovered, too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandre, R.: Around 3D Boltzmann non linear operator without angular cutoff, a new formulation. M2AN Math. Model. Numer. Anal. 34(3), 575–590 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alexandre, R., Desvillettes, L., Villani, C., Wennberg, B.: Entropy dissipation and long-range interactions. Arch. Ration. Mech. Anal. 152(4), 327–355 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alexandre, R., El Safadi, M.: Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations, I: non-cutoff case and Maxwellian molecules. Math. Models Methods Appl. Sci. 15(6), 907–920 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Arkeryd, L.: Intermolecular forces of infinite range and the Boltzmann equation. Arch. Ration. Mech. Anal. 77(1), 11–21 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bobylev, A.V.: Fourier transform method in the theory of the Boltzmann equation for Maxwell molecules. Dokl. Akad. Nauk SSSR 225, 1041–1044 (1975)

    ADS  MathSciNet  Google Scholar 

  6. Bobylev, A.V., Rjasanow, S.: Difference scheme for the Boltzmann equation based on fast Fourier transform. Eur. J. Mech. B/Fluids 16(2), 293–306 (1997)

    MATH  MathSciNet  Google Scholar 

  7. Bobylev, A.V., Rjasanow, S.: Fast deterministic method of solving the Boltzmann equation for hard spheres. Eur. J. Mech. B/Fluids 18(5), 869–887 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bouchut, F., Desvillettes, L.: A proof of the smoothing properties of the positive part of Boltzmann’s kernel. Rev. Mat. Iberoam. 14(1), 47–61 (1998)

    MATH  MathSciNet  Google Scholar 

  9. Desvillettes, L.: About the use of the Fourier transform for the Boltzmann equation. In: Summer School on “Methods and Models of Kinetic Theory” (M&MKT 2002). Riv. Mat. Univ. Parma (7) 2, 1–99 (2003)

  10. Desvillettes, L., Wennberg, B.: Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff. Commun. Partial Differ. Equ. 29(1–2), 133–155 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Duduchava, R., Rjasanow, S.: Mapping properties of the Boltzmann collision operator. Integral Equ. Oper. Theory 52(1), 61–84 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gelfand, I.M., Shilov, G.E.: Generalized Functions. Academic Press, New York (1968)

    Google Scholar 

  13. Ibragimov, I., Rjasanow, S.: Numerical solution of the Boltzmann equation on the uniform grid. Computing 69(2), 163–186 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Karwowski, A.: Grad’s 13 moment equations in a modified form. J. Stat. Phys. doi: 10.1007/s10955-006-9216-6 (2007)

  15. Lions, P.-L.: Compactness in Boltzmann’s equation via Fourier integral operators and applications, I. J. Math. Kyoto Univ. 34(2), 391–427 (1994)

    MATH  MathSciNet  Google Scholar 

  16. Lions, P.-L.: Compactness in Boltzmann’s equation via Fourier integral operators and applications, II. J. Math. Kyoto Univ. 34(2), 429–461 (1994)

    Google Scholar 

  17. Mouhot, C., Pareschi, L.: Fast methods for the Boltzmann collision integral. C. R. Math. Acad. Sci. Paris 339(1), 71–76 (2004)

    MATH  MathSciNet  Google Scholar 

  18. Mouhot, C., Villani, C.: Regularity theory for the spatially homogeneous Boltzmann equation with cut-off. Arch. Ration. Mech. Anal. 173(2), 169–212 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pareschi, L., Perthame, B.: A Fourier spectral method for homogeneous Boltzmann equations. Transp. Theory Stat. Phys. 25, 369–382 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pareschi, L., Russo, G.: Numerical solution of the Boltzmann equation, I: spectrally accurate approximation of the collision operator. SIAM J. Numer. Anal. 37(4), 1217–1245 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Pareschi, L., Russo, G.: On the stability of spectral methods for the homogeneous Boltzmann equation. Transp. Theory Stat. Phys. 29(3-5), 431–447 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pareschi, L., Toscani, G., Villani, C.: Spectral methods for the non cut-off Boltzmann equation and numerical grazing collision limit. Numer. Math. 93(3), 527–548 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Taylor, M.E.: Partial Differential Equations—Basic Theory. Springer, New York (1996)

    MATH  Google Scholar 

  24. Villani, C.: On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Ration. Mech. Anal. 143(3), 273–307 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Villani, C.: Regularity estimates via the entropy dissipation for the spatially homogeneous Boltzmann equation without cut-off. Rev. Mat. Iberoam. 15(2), 335–352 (1999)

    MATH  MathSciNet  Google Scholar 

  26. Wennberg, B.: Regularity in the Boltzmann equation and the radon transform. Commun. Partial Differ. Equ. 19(11/12), 2057–2074 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rjasanow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirsch, R., Rjasanow, S. A Weak Formulation of the Boltzmann Equation Based on the Fourier Transform. J Stat Phys 129, 483–492 (2007). https://doi.org/10.1007/s10955-007-9374-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9374-1

Keywords

Navigation