Skip to main content
Log in

Regularity Theory for the Spatially Homogeneous Boltzmann Equation with Cut-Off

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract.

We develop the regularity theory of the spatially homogeneous Boltzmann equation with cut-off and hard potentials (for instance, hard spheres), by (i) revisiting the Lp theory to obtain constructive bounds, (ii) establishing propagation of smoothness and singularities, (iii) obtaining estimates on the decay of the singularities of the initial datum. Our proofs are based on a detailed study of the “regularity of the gain operator”. An application to the long-time behavior is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrahamsson, F.: Strong L1 convergence to equilibrium without entropy conditions for the Boltzmann equation. Comm. Partial Differential Equations 24, 1501–1535 (1999)

    MathSciNet  MATH  Google Scholar 

  2. Alexandre, R., Desvillettes, L., Villani, C., Wennberg, B.: Entropy dissipation and long-range interactions. Arch. Rational Mech. Anal. 152, 327–355 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arkeryd, L.: On the Boltzmann equation. Arch. Rational Mech. Anal. 45, 1–34 (1972)

    MATH  Google Scholar 

  4. Arkeryd, L.: Intermolecular forces of infinite range and the Boltzmann equation. Arch. Rational Mech. Anal. 77, 11–21 (1981)

    MathSciNet  MATH  Google Scholar 

  5. Arkeryd, L.: L estimates for the space-homogeneous Boltzmann equation. J. Statist. Phys. 31, 347–361 (1983)

    MathSciNet  MATH  Google Scholar 

  6. Arkeryd, L.: Stability in L1 for the spatially homogeneous Boltzmann equation. Arch. Rational Mech. Anal. 103, 151–167 (1988)

    MathSciNet  MATH  Google Scholar 

  7. Bobylëv, A.V.: The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules. In: Mathematical physics reviews, Vol. 7. Harwood Academic Publ., Chur, 1988, pp. 111–233

  8. Bouchut, F., Desvillettes, L.: A proof of the smoothing properties of the positive part of Boltzmann’s kernel. Rev. Mat. Iberoamericana 14, 47–61 (1998)

    MathSciNet  MATH  Google Scholar 

  9. Carleman, T.: Sur la théorie de l’equation intégrodifférentielle de Boltzmann. Acta Math. 60, 369–424 (1932)

    Google Scholar 

  10. Carleman, T.: Problèmes Mathématiques dans la Théorie Cinétique des Gaz. Almqvist & Wiksell, 1957

  11. Desvillettes, L.: Some applications of the method of moments for the homogeneous Boltzmann and Kac equations. Arch. Rational Mech. Anal. 123, 387–404 (1993)

    MathSciNet  MATH  Google Scholar 

  12. Desvillettes, L., Villani, C.: On the spatially homogeneous Landau equation for hard potentials, II: H-theorem and applications. Comm. Partial Differential Equations 25, 261–298 (2000)

    MathSciNet  MATH  Google Scholar 

  13. Goudon, T.: On Boltzmann equations and Fokker-Planck asymptotics: influence of grazing collisions. J. Statist. Phys. 89, 751–776 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Grad, H.: Principles of the kinetic theory of gases. In: Flügge’s Handbuch des Physik, vol. XII. Springer-Verlag, 1958, pp. 205–294

  15. Gustafsson, T.: Lp-estimates for the nonlinear spatially homogeneous Boltzmann equation. Arch. Rational Mech. Anal. 92, 23–57 (1986)

    MathSciNet  MATH  Google Scholar 

  16. Gustafsson, T.: Global Lp-properties for the spatially homogeneous Boltzmann equation. Arch. Rational Mech. Anal. 103, 1–38 (1988)

    MathSciNet  MATH  Google Scholar 

  17. Lions, P.-L.: Compactness in Boltzmann’s equation via Fourier integral operators and applications, I. J. Math. Kyoto Univ. 34, 391–427 (1994)

    MathSciNet  MATH  Google Scholar 

  18. Lions, P.-L.: Compactness in Boltzmann’s equation via Fourier integral operators and applications, II. J. Math. Kyoto Univ. 34, 429–461 (1994)

    MATH  Google Scholar 

  19. Lions, P.-L.: Compactness in Boltzmann’s equation via Fourier integral operators and applications, III. J. Math. Kyoto Univ. 34, 539–584 (1994)

    MathSciNet  MATH  Google Scholar 

  20. Lu, X.: A direct method for the regularity of the gain term in the Boltzmann equation. J. Math. Anal. Appl. 228, 409–435 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mischler, S., Wennberg, B.: On the spatially homogeneous Boltzmann equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 16, 467–501 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Povzner, A.J.: The Boltzmann equation in the kinetic theory of gases. Amer. Math. Soc. Transl. 47, 193–214 (1965)

    MATH  Google Scholar 

  23. Pulvirenti, A., Wennberg, B.: A Maxwellian lower bound for solutions to the Boltzmann equation. Comm. Math. Phys. 183, 145–160 (1997)

    MathSciNet  MATH  Google Scholar 

  24. Sogge, C.D., Stein, E.M.: Averages of functions over hypersurfaces in Rn. Invent. Math. 82, 543–556 (1985)

    MathSciNet  MATH  Google Scholar 

  25. Sogge, C.D., Stein, E.M.: Averages over hypersurfaces, II. Invent. Math. 86, 233–242 (1986)

    MathSciNet  MATH  Google Scholar 

  26. Sogge, C.D., Stein, E.M.: Averages over hypersurfaces. Smoothness of generalized Radon transforms. J. Analyse Math. 54, 165–188 (1990)

    MATH  Google Scholar 

  27. Toscani, G., Villani, C.: On the trend to equilibrium for some dissipative systems with slowly increasing a priori bounds. J. Statist. Phys. 98, 1279–1309 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Villani, C.: On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Rational Mech. Anal. 143, 273–307 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Villani, C.: Cercignani’s conjecture is sometimes true, and always almost true. Comm. Math. Phys. 234, 455–490 (2003)

    MathSciNet  MATH  Google Scholar 

  30. Wennberg, B.: Stability and exponential convergence in Lp for the spatially homogeneous Boltzmann equation. Nonlinear Anal. 20, 935–964 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wennberg, B.: On moments and uniqueness for solutions to the space homogeneous Boltzmann equation. Transport Theory Statist. Phys. 23, 533–539 (1994)

    MathSciNet  MATH  Google Scholar 

  32. Wennberg, B.: Regularity in the Boltzmann equation and the Radon transform. Comm. Partial Differential Equations 19, 2057–2074 (1994)

    MathSciNet  MATH  Google Scholar 

  33. Wennberg, B.: Entropy dissipation and moment production for the Boltzmann equation. J. Statist. Phys. 86, 1053–1066 (1997)

    MathSciNet  MATH  Google Scholar 

  34. Wennberg, B.: An example of nonuniqueness for solutions to the homogeneous Boltzmann equation. J. Statist. Phys. 95, 469–477 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Villani.

Additional information

Communicated by Y. Brenier

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mouhot, C., Villani, C. Regularity Theory for the Spatially Homogeneous Boltzmann Equation with Cut-Off. Arch. Rational Mech. Anal. 173, 169–212 (2004). https://doi.org/10.1007/s00205-004-0316-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-004-0316-7

Keywords

Navigation