Skip to main content
Log in

Navier–Stokes Transport Coefficients of d-Dimensional Granular Binary Mixtures at Low Density

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The Navier–Stokes transport coefficients for binary mixtures of smooth inelastic hard disks or spheres under gravity are determined from the Boltzmann kinetic theory by application of the Chapman–Enskog method for states near the local homogeneous cooling state. It is shown that the Navier–Stokes transport coefficients are not affected by the presence of gravity. As in the elastic case, the transport coefficients of the mixture verify a set of coupled linear integral equations that are approximately solved by using the leading terms in a Sonine polynomial expansion. The results reported here extend previous calculations (Garzó, V., Dufty, J.W. in Phys. Fluids 14:1476–1490, 2002) to an arbitrary number of dimensions and provide explicit expressions for the seven Navier–Stokes transport coefficients in terms of the coefficients of restitution and the masses, composition, and sizes of the constituents of the mixture. In addition, to check the accuracy of our theory, the inelastic Boltzmann equation is also numerically solved by means of the direct simulation Monte Carlo method to evaluate the diffusion and shear viscosity coefficients for hard disks. The comparison shows a good agreement over a wide range of values of the coefficients of restitution and the parameters of the mixture (masses and sizes).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldshtein, A., Shapiro, M.: Mechanics of collisional motion of granular materials, part 1: general hydrodynamic equations. J. Fluid Mech. 282, 75–114 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Brey, J.J., Dufty, J.W., Santos, A.: Dissipative dynamics for hard spheres. J. Stat. Phys. 87, 1051–1066 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Brilliantov, N.V., Pöschel, T.: Kinetic Theory of Granular Gases. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  4. Chapman, S., Cowling, T.G.: The Mathematical Theory of Nonuniform Gases. Cambridge University Press, Cambridge (1970)

    Google Scholar 

  5. Brey, J.J., Dufty, J.W., Kim, C.S., Santos, A.: Hydrodynamics for granular flow at low-density. Phys. Rev. E 58, 4638–4653 (1998)

    Article  ADS  Google Scholar 

  6. Brey, J.J., Cubero, D.: Hydrodynamic transport coefficients of granular gases. In: Pöschel T., Luding S. (eds.) Granular Gases. Lecture Notes in Physics, vol. 564, pp. 59–78. Springer, Berlin (2001)

    Chapter  Google Scholar 

  7. Garzó, V., Montanero, J.M.: Transport coefficients of a heated granular gas. Physica A 313, 336–356 (2002)

    Article  MATH  ADS  Google Scholar 

  8. Jenkins, J.T., Mancini, F.: Kinetic theory for binary mixtures of smooth, nearly elastic spheres. Phys. Fluids A 1, 2050–2057 (1989)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Zamankhan, P.: Kinetic theory for multicomponent dense mixtures of slightly inelastic spherical particles. Phys. Rev. E 52, 4877–4891 (1995)

    Article  ADS  Google Scholar 

  10. Arnarson, B., Willits, J.T.: Thermal diffusion in binary mixtures of smooth, nearly elastic spheres with and without gravity. Phys. Fluids 10, 1324–1328 (1998)

    Article  ADS  Google Scholar 

  11. Willits, J.T., Arnarson, B.: Kinetic theory of a binary mixture of nearly elastic disks. Phys. Fluids 11, 3116–3122 (1999)

    Article  ADS  MATH  Google Scholar 

  12. Garzó, V., Dufty, J.W.: Homogeneous cooling state for a granular mixture. Phys. Rev. E 60, 5706–5713 (1999)

    Article  ADS  Google Scholar 

  13. Martin, P.A., Piasecki, J.: Thermalization of a particle by dissipative collisions. Europhys. Lett. 46, 613–616 (1999)

    Article  ADS  Google Scholar 

  14. Montanero, J.M., Garzó, V.: Monte Carlo simulation of the homogeneous cooling state for a granular mixture. Gran. Matt. 4, 17–24 (2002)

    Article  Google Scholar 

  15. Barrat, A., Trizac, E.: Lack of energy equipartition in homogeneous heated binary granular mixtures. Gran. Matt. 4, 57–63 (2002)

    Article  MATH  Google Scholar 

  16. Dahl, S.R., Hrenya, C.M., Garzó, V., Dufty, J.W.: Kinetic temperatures for a granular mixture. Phys. Rev. E 66, 041301 (2002)

    Article  ADS  Google Scholar 

  17. Pagnani, R., Marconi, U.M.B., Puglisi, A.: Driven low density granular mixtures. Phys. Rev. E. 66, 051304 (2002)

    Article  ADS  Google Scholar 

  18. Paolotti, D., Cattuto, C., Marconi, U.M.B., Puglisi, A.: Dynamical properties of vibrofluidized granular mixtures. Gran. Matt. 5, 75–83 (2003)

    Article  Google Scholar 

  19. Krouskop, P., Talbot, J.: Mass and size effects in three-dimensional vibrofluidized granular mixtures. Phys. Rev. E 68, 021304 (2003)

    Article  ADS  Google Scholar 

  20. Wang, H., Jin, G., Ma, Y.: Simulation study on kinetic temperatures of vibrated binary granular mixtures, Phys. Rev. E. 68, 031301 (2003)

    Article  ADS  Google Scholar 

  21. Brey, J.J., Ruiz-Montero, M.J., Moreno, F.: Energy partition and segregation for an intruder in a vibrated granular system under gravity. Phys. Rev. Lett. 95, 098001 (2005)

    Article  ADS  Google Scholar 

  22. Schröter, M., Ulrich, S., Kreft, J., Swift, J.B., Swinney, H.L.: Mechanisms in the size segregation of a binary granular mixture. Phys. Rev. E 74, 011307 (2006)

    Article  ADS  Google Scholar 

  23. Wildman, R.D., Parker, D.J.: Coexistence of two granular temperatures in binary vibrofluidized beds. Phys. Rev. Lett. 88, 064301 (2002)

    Article  ADS  Google Scholar 

  24. Feitosa, K., Menon, N.: Breakdown of energy equipartition in a 2D binary vibrated granular gas. Phys. Rev. Lett. 88, 198301 (2002)

    Article  ADS  Google Scholar 

  25. Jenkins, J., Mancini, F.: Balance laws and constitutive relations for plane flows of a dense binary mixture of smooth, nearly elastic, circular disks. J. Appl. Mech. 54, 27–34 (1987)

    Article  MATH  Google Scholar 

  26. Garzó, V., Dufty, J.W.: Hydrodynamics for a granular binary mixture at low density. Phys. Fluids 14, 1476–1490 (2002)

    Article  ADS  Google Scholar 

  27. Garzó, V., Astillero, A.: Transport coefficients for inelastic Maxwell mixtures. J. Stat. Phys. 118, 935–971 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Garzó, V., Montanero, J.M., Dufty, J.W.: Mass and heat fluxes for a binary granular mixture at low-density. Phys. Fluids 18, 083305 (2006)

    Article  ADS  Google Scholar 

  29. Garzó, V., Montanero, J.M.: Diffusion of impurities in a granular gas. Phys. Rev. E 69, 021301 (2004)

    Article  ADS  Google Scholar 

  30. Montanero, J.M., Garzó, V.: Shear viscosity for a heated granular binary mixture at low-density. Phys. Rev. E 67, 021308 (2003)

    Article  ADS  Google Scholar 

  31. Serero, D., Goldhirsch, I., Noskowicz, S.H., Tan, M.-L.: Hydrodynamics of granular gases and granular gas mixtures. J. Fluid Mech. 554, 237–258 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Warr, S., Huntley, J.M., Jacques, G.T.H.: Fluidization of a two-dimensional granular system: Experimental study and scaling behavior. Phys. Rev. E 52, 5583–5595 (1995)

    Article  ADS  Google Scholar 

  33. Olafsen, J.S., Urbach, J.S.: Velocity distribution and density fluctuations in a granular gas. Phys. Rev. E 60, R2468–R2471 (1999)

    Article  ADS  Google Scholar 

  34. Wildman, R.D., Huntley, J.M., Hansen, J.P.: Self-diffusion of grains in two-dimensional vibrofluidized bed. Phys. Rev. E 60, 7066–7075 (1999)

    Article  ADS  Google Scholar 

  35. Rouyer, F., Menon, N.: Velocity fluctuations in a homogeneous 2D granular gas in steady state. Phys. Rev. Lett. 85, 3676–3679 (2000)

    Article  ADS  Google Scholar 

  36. Blair, D.L., Kudrolli, A.: Velocity correlations in dense granular flows. Phys. Rev. E 64, 050301 (2001)

    Article  ADS  Google Scholar 

  37. Horluck, S., van Hecke, M., Dimon, P.: Shock waves in two-dimensional granular flow: effects of rough walls and polydispersity. Phys. Rev. E 67, 021304 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  38. Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation Monte Carlo of Gas Flows. Clarendon, Oxford (1994)

    Google Scholar 

  39. Santos, A., Garzó, V., Dufty, J.W.: Inherent rheology of a granular fluid in uniform shear flow. Phys. Rev. E 69, 061303 (2004)

    Article  ADS  Google Scholar 

  40. van Noije, T.P.C., Ernst, M.H.: Velocity distributions in inhomogeneous granular fluids: the free and the heated case. Gran. Matt. 1, 57–64 (1998)

    Article  Google Scholar 

  41. Garzó, V.: Tracer diffusion in granular shear flows. Phys. Rev. E 66, 021308 (2002)

    Article  ADS  Google Scholar 

  42. Brey, J.J., Ruiz-Montero, M.J., Moreno, F.: Hydrodynamic profiles for an impurity in an open vibrated granular gas. Phys. Rev. E 73, 031301 (2006)

    Article  ADS  Google Scholar 

  43. Brey, J.J., Cubero, D.: Hydrodynamic transport coefficients of granular gases. In: Pöschel T, Luding S. (eds.) Granular Gases. Lecture Notes in Physics, pp. 59–78. Springer, Berlin (2001)

    Chapter  Google Scholar 

  44. McLennan, J.A.: Introduction to Nonequilibrium Statistical Mechanics. Prentice-Hall, New Jersey (1989)

    Google Scholar 

  45. Brey, J.J., Ruiz-Montero, M.J., Cubero, D., García-Rojo, R.: Self-diffusion in freely evolving granular gases. Phys. Fluids 12, 876–883 (2000)

    Article  ADS  MATH  Google Scholar 

  46. Garzó, V., Montanero, J.M.: Shear viscosity for a moderately dense granular binary mixture. Phys. Rev. E 68, 041302 (2003)

    Article  ADS  Google Scholar 

  47. Montanero, J.M., Santos, A., Garzó, V.: DSMC evaluation of the Navier–Stokes shear viscosity of a granular fluid. In: Capitelli M. (ed.) Rarefied Gas Dynamics 24. AIP Conference Proceedings, vol. 762, pp. 797–802. American Institute of Physics, New York (2005), preprint arXiv: cond-mat/0411219

    Google Scholar 

  48. Brey, J.J., Ruiz-Montero, M.J.: Simulation study of the Green–Kubo relations for dilute granular gases. Phys. Rev. E 70, 051301 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  49. Brey, J.J., Ruiz-Montero, M.J., Maynar, P., García de Soria, I.M.: Hydrodynamic modes, Green–Kubo relations, and velocity correlations in dilute granular gases. J. Phys.: Condens. Matter 17, S2489–S2502 (2005)

    Article  ADS  Google Scholar 

  50. Montanero, J.M., Santos, A., Garzó, V.: First-order Chapman–Enskog velocity distribution function in a granular gas. Physica A 376, 75–93 (2007)

    Article  ADS  Google Scholar 

  51. Garzó, V., Santos, A., Montanero, J.M.: Modified Sonine approximation for the Navier–Stokes transport coefficients of a granular gas. Physica A 376, 94–107 (2007)

    Article  ADS  Google Scholar 

  52. López de Haro, M., Cohen, E.G.D., Kincaid, J.M.: The Enskog theory for multicomponent mixtures, I: linear transport theory. J. Chem. Phys. 78, 2746–2759 (1983)

    Article  ADS  Google Scholar 

  53. Garzó, V., Dufty, J.W.: Dense fluid transport for inelastic hard spheres. Phys. Rev. E 59, 5895–5911 (1999)

    Article  ADS  Google Scholar 

  54. Ernst, M.H., Brito, R.: Scaling solutions of inelastic Boltzmann equations with over-populated high energy tails. J. Stat. Phys. 109, 407–432 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Garzó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garzó, V., Montanero, J.M. Navier–Stokes Transport Coefficients of d-Dimensional Granular Binary Mixtures at Low Density. J Stat Phys 129, 27–58 (2007). https://doi.org/10.1007/s10955-007-9357-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9357-2

Keywords

Navigation