Skip to main content

Hydrodynamic Transport Coefficients of Granular Gases

  • Chapter
  • First Online:
Granular Gases

Part of the book series: Lecture Notes in Physics ((LNP,volume 564))

Abstract

Some transport properties of granular gases are investigated. Starting from a kinetic theory level of description, the hydrodynamic transport equations to Navier-Stokes order are presented. The equations are derived by means of the Chapman-Enskog procedure. To test the existence of a normal solution and the possibility of a hydrodynamic description, the theoretical predictions are compared with numerical simulations of the underlying kinetic equation for small deviations around the reference homogeneous state. An excellent agreement is found for all the range of dissipation in collisions considered. Similar analysis is presented for self-diffusion and Brownian motion. In the former case, also Molecular Dynamics results are shown to agree with the theoretical predictions. Quantitative and also qualitative differences with the elastic limit are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A classical and useful reference is: C. S. Campbell, Annu. Rev. Fluid Mech. 22, 57 (1990).

    Article  ADS  Google Scholar 

  2. J. J. Brey, J. W. Dufty, and A. Santos, J. Stat. Phys. 87, 1051 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. C. K. K. Lun, S. B. Savage, D. J. Jeffrey, and N. Chepurniy, J. Fluid Mech. 140, 223 (1984).

    Article  MATH  ADS  Google Scholar 

  4. J. T. Jenkins and M. W. Richman, Arch. Ration. Mech. Anal. 87, 355 (1985); Phys. Fluids 28, 3485 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  5. N. Sela and I. Goldhirsch, J. Fluid Mech. 361, 41 (1998).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. A. Goldshtein and M. Shapiro, J. Fluid Mech. 282, 75 (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. J. J. Brey, J. W. Dufty, C. S. Kim, and A. Santos, Phys. Rev. E 58, 4638 (1998); J. J. Brey and D. Cubero, unpublished.

    Article  ADS  Google Scholar 

  8. V. Garzó and J. W. Dufty, Phys. Rev. E 59, 5895 (1999).

    Article  ADS  Google Scholar 

  9. J. A. McLennan, Introduction to Nonequilibrium Statistical Mechanics (Prentice-Hall, New Jersey, 1989).

    Google Scholar 

  10. P. Résibois and M. de Leener, Classical Kinetic Theory of Fluids, (John Wiley and Sons, New York, 1977).

    Google Scholar 

  11. H. Jaeger, S. Nagel, and R. Behringer, Rev. Mod. Phys. 68, 1250 (1996).

    Article  ADS  Google Scholar 

  12. V. V. R. Natarajan, M. L. Hunt, and E. D. Taylor, J. Fluid Mech. 304, 1 (1995), and references therein.

    Article  ADS  Google Scholar 

  13. O. Zik and J. Stavans, Europhys. Lett. 16, 255 (1991).

    Article  ADS  Google Scholar 

  14. R. D. Wildman, J. M. Huntley, and J.-P. Hansen, Phys. Rev. E, 60, 7066 (1999).

    Article  ADS  Google Scholar 

  15. C. S. Campbell, J. Fluid Mech. 348, 85 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. R. F. Rodríguez, E. Salinas-Rodríguez. and J. W. Dufty, J. Stat. Phys. 32, 279 (1983).

    Article  ADS  Google Scholar 

  17. J. J. Brey, J. W. Dufty, and A. Santos, J. Stat. Phys. 97, 281 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  18. G. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, (Clrendon Press, Oxford, 1994).

    Google Scholar 

  19. M. L. Tan and I. Goldhirsch, Phys. Rev. Lett. 81, 3022 (1998).

    Article  ADS  Google Scholar 

  20. L. P. Kadanoff, Rev. Mod. Phys. 71, 435 (1999).

    Article  ADS  Google Scholar 

  21. J. W. Dufty and J. J. Brey, Phys. Rev. Lett. 82, 4566 (1999).

    Article  ADS  Google Scholar 

  22. J. J. Brey, M. J. Ruiz-Montero, and D. Cubero, Phys. Rev. E 54, 3664 (1996).

    Article  ADS  Google Scholar 

  23. H. van Beijeren and M. H. Ernst, Physica A 68, 437 (1973); 70, 225 (1973).

    Article  Google Scholar 

  24. J. J. Brey, M. J. Ruiz-Montero, and D. Cubero, Europhys. Lett. 48, 359 (1999)

    Article  ADS  Google Scholar 

  25. D. M. Gass, J. Chem. Phys. 54, 1898 (1971).

    Article  ADS  Google Scholar 

  26. P. Deltour and J. L. Barrat, J. Phys. I 7, 137 (1997).

    Article  Google Scholar 

  27. J. J. Brey, M. J. Ruiz-Montero, D. Cubero, and R. García-Rojo, Phys. Fluids 12 876 (2000).

    Article  ADS  MATH  Google Scholar 

  28. T. P. C. van Noije and M. H. Ernst, Granular Matter 1, 57 (1998).

    Article  Google Scholar 

  29. I. Goldhirsch and G. Zanetti, Phys. Rev. Lett. 70, 1619 (1993); S. McNamara and W. R. Young, Phys. Rev. E 50, R28 (1994).

    Article  ADS  Google Scholar 

  30. H. Risken, The Fokker-Planck Equation (Springer-Verlag, Berlin, 1984).

    MATH  Google Scholar 

  31. J. J. Brey, M. J. Ruiz-Montero, D. Cubero, and J. W. Dufty, Phys. Rev. E 60, 7174 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brey, J.J., Cubero, D. (2001). Hydrodynamic Transport Coefficients of Granular Gases. In: Pöschel, T., Luding, S. (eds) Granular Gases. Lecture Notes in Physics, vol 564. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44506-4_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-44506-4_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41458-2

  • Online ISBN: 978-3-540-44506-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics