Skip to main content
Log in

Euclidean Gibbs Measures of Interacting Quantum Anharmonic Oscillators

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A rigorous description of the equilibrium thermodynamic properties of an infinite system of interacting ν-dimensional quantum anharmonic oscillators is given. The oscillators are indexed by the elements of a countable set \({\mathbb L}\subset {\mathbb R}^d\), possibly irregular; the anharmonic potentials vary from site to site and the interaction has infinite range. The description is based on the representation of the Gibbs states in terms of path measures—the so called Euclidean Gibbs measures. It is proven that: (a) the set of such measures \(\mathcal{G}^{\rm t}\) is non-void and compact; (b) every \(\mu \in \mathcal{G}^{\rm t}\) obeys an exponential integrability estimate, the same for the whole set \(\mathcal{G}^{\rm t}\); (c) every μ \(\mu \in \mathcal{G}^{\rm t}\) has a Lebowitz-Presutti type support; (d) \(\mathcal{G}^{\rm t}\) is a singleton at high temperatures. The case of attractive interaction and \(\nu=1\) is studied in more detail. We prove that: (a) \(|\mathcal{G}^{\rm t}|>1\) at low temperatures; (b) \(|\mathcal{G}^{\rm t}|=1\) due to quantum effects and at a nonzero external field. Thereby, a qualitative theory of phase transitions and quantum effects, which interprets most important experimental data known for the corresponding physical objects, is developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Albeverio and R. Høegh-Krohn, Homogeneous random fields and quantum statistical mechanics. J. Func. Anal. 19:241–272 (1975).

    Article  Google Scholar 

  2. S. Albeverio, Y. Kondratiev and Y. Kozitsky, Suppression of critical fluctuations by strong quantum effects in quantum lattice systems. Commun. Math. Phys. 194:493–512 (1998).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. S. Albeverio, Y. G. Kondratiev, Y. Kozitsky and M. Röckner, Uniqueness of Gibbs states of quantum lattices in small mass regime. Ann. Inst. H. Poincaré: Probab. Statist. 37:43–69 (2001).

    Article  MATH  Google Scholar 

  4. S. Albeverio, Y. Kondratiev, Y. Kozitsky and M. Röckner, Euclidean Gibbs states of quantum lattice systems. Rev. Math. Physics. 14:1–67 (2002).

    Article  Google Scholar 

  5. S. Albeverio, Y. Kondratiev, Y. Kozitsky and M. Röckner, Small mass implies uniqueness of Gibbs states of a quantum crystal. Commun. Math. Phys. 241:69–90 (2003).

    MATH  ADS  Google Scholar 

  6. S. Albeverio, Y. Kondratiev, Y. Kozitsky and M. Röckner, Quantum stabilization in anharmonic crystals. Phys. Rev. Lett. 90:170603-1–4 (2003).

    Article  ADS  Google Scholar 

  7. S. Albeverio, Y. G. Kondratiev, T. Pasurek and M. Röckner, Euclidean Gibbs measures on loop spaces: existence and a priori estiamtes. Ann. Probab. 32:153–190 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  8. S. Albeverio, Y. G. Kondratiev, T. Pasurek and M. Röckner, Existence and a priori estimates for Euclidean Gibbs states. Transec. Moscow Math. Soc. 67:3–101 (2006).

    Google Scholar 

  9. S. Albeverio, Y. G. Kondratiev and M. Röckner, Ergodicity of L2-semigroups and extremality of Gibbs states. J. Funct. Anal. 144:394–423 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  10. S. Albeverio, Y. G. Kondratiev and M. Röckner, Ergodicity of the stochastic dynamics of quasi-invariant measures and applications to Gibbs states. J. Funct. Anal. 149:415–469 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Albeverio, Y. G. Kondratiev, M. Röckner and T. V. Tsikalenko, Uniqueness of Gibbs states for quantum lattice systems. Prob. Theory Rel. Fields 108:193–218 (1997).

    Article  MATH  Google Scholar 

  12. S. Albeverio, Y. G. Kondratiev, M. Röckner and T. V. Tsikalenko, Dobrushin's uniqueness for quantum lattice systems with nonlocal interaction. Commun. Math. Phys. 189:621–630 (1997).

    Article  MATH  ADS  Google Scholar 

  13. S. Albeverio, Y. G. Kondratiev, M. Röckner and T. V. Tsikalenko, A priori estimates for symmetrizing measures and their applications to Gibbs states. J. Func. Anal. 171:366–400 (2000).

    Article  MATH  Google Scholar 

  14. S. Albeverio, Y. G. Kondratiev, M. Röckner and T. V. Tsikalenko, Glauber dynamics for quantum lattice systems. Rev. Math. Phys. 13:51–124 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  15. L. Amour, C. Canselier, P. Levy-Bruhl and J. Nourrigat, States of a one dimensional quantum crystal, C. R. Acad. Sci. Paris, Ser. I 336:981–984 (2003).

    MATH  Google Scholar 

  16. V. S. Barbulyak and Y. G. Kondratiev, The quasiclassical limit for the Schrödinger operator and phase transitions in quantum statistical physics. Func. Anal. Appl. 26(2):61–64 (1992).

    Article  Google Scholar 

  17. J. Bellissard and R. Høegh-Krohn, Compactness and the maximal Gibbs states for random Gibbs fields on a lattice. Commun. Math. Phys. 84:297–327 (1982).

    Article  MATH  ADS  Google Scholar 

  18. G. Benfatto, E. Presutti and M. Pulvirenti, DLR measures for one-dimensional harmonic systems. Z. Wahrscheinlichkeitstheorie verw. Gebiete 41:305–312 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  19. P. Billingsley, Probability and Measure, Second Edition, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. (John Wiley & Sons, Inc., New York, 1986).

    Google Scholar 

  20. L. Birke and J. Fröhlich, KMS, ect. Rev. Math. Phys. 14:829–871 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  21. R. Blinc and B. Žekš, Soft Modes in Ferroelectrics and Antiferroelectrics. (North-Holland Publishing Company/Americal Elsevier, Amsterdam London New York, 1974).

    Google Scholar 

  22. V. S. Borkar, Probability Theory. An Advanced Course Universitext (Springer-Verlag, New York Berlin Heidelberg, 1995).

    MATH  Google Scholar 

  23. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, I, II (Springer, Berlin Heidelberg New York, 1981).

    Google Scholar 

  24. M. Cassandro, E. Olivieri, A. Pellegrinotti and E. Presutti, Existence and uniqueness of DLR measures for unbounded spin systems. Z. Wahrscheinlichkeitstheorie verw. Gebiete 41:313–334 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  25. R. L. Dobrushin, Prescribing a system of random variables by conditional distributions. Theory Probab. Appl. 15:458–486 (1970).

    Article  Google Scholar 

  26. J.-D. Deuschel and D. W. Strook, Large Deviations (Academic Press Inc., London, 1989).

    MATH  Google Scholar 

  27. W. Driessler, L. Landau and J. Fernando-Perez, Estimates of critical lengths and critical temperatures for classical and quantum lattice systems. J. Statist. Phys. 20:123–162 (1979).

    Article  MathSciNet  Google Scholar 

  28. R. Dudley, Probability and Metrics (Aarhus Lecture Notes, Aarhus University, 1976).

  29. F. J. Dyson, E. H. Lieb and B. Simon, Phase transitions in quantum spin systems with isotropic and anisotropic interactions. J. Statist. Phys. 18:335–383 (1978).

    Article  MathSciNet  Google Scholar 

  30. W. G. Faris and R. A. Minlos, A quantum crystal with multidimensional anharmonic oscillators, J. Statist. Phys. 94:365–387 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  31. R. Fernández, J. Fröhlich and A.D. Sokal, Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory (Springer-Verlag, Berlin Heidelberg New York, 1992).

    MATH  Google Scholar 

  32. J. K. Freericks, M. Jarrell and C. D. Mahan, The anharmonic electron-phonon problem. Phys. Rev. Lett. 77:4588–4591 (1996).

    Article  ADS  Google Scholar 

  33. J. K. Freericks and E. H. Lieb, Ground state of a general electron-phonon Hamiltonian is a spin singlet. Phys. Rev. B 51:2812–2821 (1995).

    Article  ADS  Google Scholar 

  34. R. Gielerak, On the DLR equation for the (λ :Φ4: + b :Φ2: + μ Φ, μ≠ 0)2 Euclidean quantum field theory: the uniqueness theorem. Ann. Phys. 189:1–28 (1989).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. R. Gielerak, L. Jakóbczyk and R. Olkiewicz, W*-KMS structure from multi-time Euclidean green functions. J. Math. Phys. 35:6291–6303 (1994).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. H.-O. Georgii, Gibbs Measures and Phase Transitions. (Studies in Mathematics, 9, Walter de Gruyter, Berlin New York, 1988).

    Google Scholar 

  37. J. Glimm and A. Jaffe, Quantum Physics. A Functional Integral Point of View, Second Edition, (Springer-Verlag, New York Berlin Heidelberg London Paris Tokyo, 1987).

    Google Scholar 

  38. S. A. Globa and Y. G. Kondratiev, The construction of Gibbs states of quantum lattice systems. Selecta Math. Sov. 9:297–307 (1990).

    MATH  Google Scholar 

  39. B. Helffer, Splitting in large dimensions and infrared estimates. II. Moment inequalities. J. Math. Phys. 39:760–776 (1998).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. M. Hirokawa, F. Hiroshima and H. Spohn, Ground state for point particles interacting through a massless scalar Bose field. Adv. Math. 191:239–292 (2005).

    Article  MathSciNet  Google Scholar 

  41. R. Høegh-Krohn, Relativistic quantum statistical mechanics in two-dimensional space-time. Commun. Math. Phys. 38:195–224 (1974).

    Article  ADS  Google Scholar 

  42. L. Iliev, Laguerre Entire Functions (Bulgarian Academy of Sciences, 1987).

  43. J. Jonasson and J. F. Steif, Amenability and phase transitions in the Ising model. J. Theoret. Probab. 12:549–559 (1990).

    Article  MathSciNet  Google Scholar 

  44. A. Klein and L. Landau, Stochastic Processes Associated with KMS States. J. Funct. Anal. 42:368–428 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  45. A. Klein and L. Landau, Periodic Gaussian Osterwalder-Schrader Positive Processes and the Two-Sided Markov Property on the Circle. Pacific J. Math. 94:341–367 (1981).

    MATH  MathSciNet  Google Scholar 

  46. T. R. Koeler, Lattice dynamics of quantum crystals, in G.K. Horton and A.A. Maradudin, editors, Dynamical Properties of Solids, II, Crystalline Solids, Applications, (North-Holland—Amsterdam, Oxford, American Elsevier—New York, 1975, pp. 1–104).

    Google Scholar 

  47. A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis (Prentice-Hall, Inc., Englewood Cliffs, N.J. 1970).

    MATH  Google Scholar 

  48. Ju. G. Kondratiev, Phase transitions in quantum models of ferroelectrics, in Srochastic Processes, Physics and Geometry, Vol. II (World Scientific, Singapure New Jersey, 1994, pp. 465–475).

    Google Scholar 

  49. Y. Kondratiev and Y. Kozitsky, Quantum stabilization and decay of correlations in anharmonic crystals. Lett. Math. Phys. 65:1–14 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  50. Y. Kozitsky, Quantum effects in a lattice model of anharmonic vector oscillators. Lett. Math. Phys. 51:71–81 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  51. Y. Kozitsky, Scalar domination and normal fluctuations in N-vector quantum anharmonic crystals. Lett. Math. Phys. 53:289–303 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  52. Y. Kozitsky, Laguerre entire functions and the Lee-Yang property. Advanced special functions and related topics in differential equations (Melfi, 2001). Appl. Math. Comput. 141:103–112 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  53. Y. Kozitsky, Mathematical theory of the Ising model and its generalizations: an introduction, in Y. Holovatch editor, Order, Disorder and Criticality (World Scientific, Singapore, 2004, pp. 1–66).

    Google Scholar 

  54. Y. Kozitsky, Gap estimates for double-well Schrödinger operators and quantum stabilization of anharmonic crystals. J. Dynam. Differential Equations 16:385–392 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  55. Y. Kozitsky, On a theorem of Høegh-Krohn. Lett. Math. Phys. 68:183–193 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  56. Y. Kozitsky, P. Oleszczuk and G. Us, Integral operators and dual orthogonal systems on a half-line. Integral Transform. Spec. Funct. 12:257–278 (2001).

    MATH  MathSciNet  Google Scholar 

  57. Y. Kozitsky and L. Wołowski, Laguerre entire functions and related locally convex spaces. Complex Variables Theory Appl. 44:225–244 (2001).

    MATH  MathSciNet  Google Scholar 

  58. Y. Kozitsky and T. Pasurek, Euclidean Gibbs Measures of Quantum Anharmonic Crystals. BiBoS Preprint 05-05-180, 2005.

  59. K. Kuratowski, Topologie, (PWN, Warszawa, 1952).

    Google Scholar 

  60. J. L. Lebowitz and A. Martin-Löf, On the uniqueness of the equilibrium state for Ising spin systems. Commun. Math. Phys. 25, 276–282 (1972).

    Article  ADS  Google Scholar 

  61. J. L. Lebowitz and O. Penrose, Analytic and clustering properties of thermodynamic functions and distribution functions for classical lattice and continuum systems. Commun. Math. Phys. 11:99–124 (1968).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  62. J. L. Lebowitz and E. Presutti, Statistical mechanics of systems of unbounded spins. Commun. Math. Phys. 50:195–218 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  63. E. H. Lieb and A. D. Sokal, A general Lee-Yang theorem for one-component and multicomponent ferromagnets. Commun. Math. Phys. 80:153–179 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  64. T. Lindvall, Lectures on the Coupling Method (John Wiley and Sons, Inc. New York Chichester Brisbane Toronto Singapore, 1992).

    MATH  Google Scholar 

  65. R. Lyons, Phase transitions on nonamenable graphs. J. Math. Phys. 41:1099–1126 (2000).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  66. R. A. Minlos, E. A. Pechersky and V. A. Zagrebnov, Analyticity of the Gibbs state for a quantum anharmonic crystal: no order parameter. Ann. Henri Poincaré 3:921–938 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  67. R. A. Minlos, A. Verbeure and V. Zagrebnov, A quantum crystal model in the light mass limit: Gibbs state. Rev. Math. Phys. 12:981–1032 (2000).

    MATH  MathSciNet  Google Scholar 

  68. H. Osada and H. Spohn, Gibbs mesures relative to Brownian motion. Ann. Probab. 27:1183–1207 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  69. Y. M. Park and H. J. Yoo, A characterization of Gibbs states of lattice boson systems. J. Statist. Phys. 75:215–239 (1994); Uniqueness and clustering properties of Gibbs states for classical and quantum unbounded spins. J. Statist. Phys. 80:223–271 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  70. K. R. Parthasarathy, Probability Measures on Metric Spaces. (Academic Press, New York, 1967.)

    MATH  Google Scholar 

  71. L. A. Pastur and B. A. Khoruzhenko, Phase transitions in quantum models of rotators and ferroelectrics. Theoret. Math. Phys. 73:111–124 (1987).

    MathSciNet  Google Scholar 

  72. N. M. Plakida and N. S. Tonchev, Quantum effects in a d-dimensional exactly solvable model for a structural phase transition. Physica 136A:176–188 (1986).

    ADS  MathSciNet  Google Scholar 

  73. C. Preston, Random Fields, Lect. Notes Math., 534, (Springer, Berlin Heidelberg New York, 1976).

    MATH  Google Scholar 

  74. M. Reed and B. Simon, Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness (Academic Press, New York London, 1975).

    MATH  Google Scholar 

  75. D. Ruelle, Statistical Mechanics. Rigorous Results (Benjamin, New York Amsterdam, 1969).

    MATH  Google Scholar 

  76. D. Ruelle, Probability estimates for contiuous spin systems. Commun. Math. Phys. 50:189–194 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  77. T. Schneider, H. Beck and E. Stoll, Quantum effects in an n-component vector model for structural phase transition. Phys. Rev. B 13:1132–1130 (1976).

    ADS  Google Scholar 

  78. B. V. Shabat, Introduction to Complex Analysis. II: Functions of Several Variables. Translations of Mathematical Monographs, 110. (American Mathematical Society, Providence, RI., 1992.)

    Google Scholar 

  79. B. Simon, The P(Φ)2 Euclidean (Quantum) Field Theory (Princeton University Press, Princeton New York, 1974).

    Google Scholar 

  80. B. Simon, Functional Integration and Quantum Physics. (Academic Press, New York London, 1979).

    MATH  Google Scholar 

  81. B. Simon, The Statistical Mechanics of Lattice Gases: I. (Princeton University Press, Princeton, New Jersey, 1993).

    Google Scholar 

  82. Ya. Sinai, Theory of Phase Transitions. Rigorous Results (Pergamon Press, Oxford, 1982).

    MATH  Google Scholar 

  83. S. Stamenković, Unified model description of order-disorder and displacive structural phase transitions. Condens. Mather Physics (Lviv) 1(14):257–309 (1998).

    Google Scholar 

  84. M. Tokunaga and T. Matsubara, Theory of ferroelectric phase transition in KH2PO4 type crystals. I. Progr. Theoret. Phys. 35:581–599 (1966).

    Article  ADS  Google Scholar 

  85. V. G. Vaks, Introduction to the Microscopic Theory of Ferroelectrics. (Nauka, Moscow, 1973, (in Russian)).

    Google Scholar 

  86. A. Verbeure and V. A. Zagrebnov, Phase transitions and algebra of fluctuation operators in exactly soluble model of a quantum anharmonic crystal. J. Stat. Phys. 69:37–55 (1992).

    Article  MathSciNet  Google Scholar 

  87. A. Verbeure and V. A. Zagrebnov, No-go theorem for quantum structural phase transition. J. Phys. A: Math.Gen. 28:5415–5421 (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  88. W. Walter, Differential and Integral Inequalities (Springer-Verlag, Berlin Heidelberg New York, 1970).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Kozitsky.

Additional information

1991 Mathematics Subject Classification: 82B10, 60J60, 60G60, 46G12, 46T12.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozitsky, Y., Pasurek, T. Euclidean Gibbs Measures of Interacting Quantum Anharmonic Oscillators. J Stat Phys 127, 985–1047 (2007). https://doi.org/10.1007/s10955-006-9274-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9274-9

Keywords

Navigation