Skip to main content
Log in

Relativistic quantum statistical mechanics in two-dimensional space-time

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct for a boson field in two-dimensional space-time with polynomial or exponential interactions and without cut-offs, the positive temperature state or the Gibbs state at temperature 1/β. We prove that at positive temperatures i.e. β<∞, there is no phase transitions and the thermodynamic limit exists and is unique for all interactions. It turns out that the Schwinger functions for the Gibbs state at temperature 1/β is after interchange of space and time equal to the Schwinger functions for the vacuum or temperature zero state for the field in a periodic box of length β, and the lowest eigenvalue for the energy of the field in a periodic box is simply related to the pressure in the Gibbs state at temperature 1/β.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ruelle, D.: Statistical mechanics. Rigorous results. New York: Benjamin 1969

    Google Scholar 

  2. Glimm, J., Jaffe, A., Spencer, T.: The Wightman axioms and particle structure of theP(φ)2 quantum field model. Ann. Math. (To appear)

  3. Albeverio, S., Høegh-Krohn, R.: The Wightman axioms and the mass gap for strong interactions of exponential type in two-dimensional space time. Preprint. Math, Inst. University of Oslo, No 12, 1973, J. Funct. Anal.16, 39–82 (1974)

    Google Scholar 

  4. Nelson, E.: J. Funct. Anal.12, 211–227 (1973)

    Google Scholar 

  5. Guerra, F., Rosen, L., Simon, B.: TheP(φ)2 Euclidean quantum field theory as a classical statistical mechanics. Preprint 1973, Princeton University

  6. Dobrushin, R. L., Minlos, R.A.: Construction of a one dimensional quantum field via a continuous Markov field. Submitted to: Functional analysis and its applications, Moscow

  7. Glimm, J., Jaffe, A.: Phys. Rev.176, 1945–1951 (1968)

    Google Scholar 

  8. Glimm, J., Jaffe, A.: Ann. Math.91, 362–401 (1970)

    Google Scholar 

  9. Glimm, J., Jaffe, A.: Acta Math.125, 203–261 (1970)

    Google Scholar 

  10. Rosen, L.: Commun. math. Phys.16, 157–183 (1970)

    Google Scholar 

  11. Høegh-Krohn, R.: Commun. math. Phys.21, 244–255 (1972)

    Google Scholar 

  12. Nelson, E.: Probability theory and Euclidean field theory. In: Velo, G., Wightman, A. (Eds.): Constructive quantum field theory. Berlin-Heidelberg-New York: Springer 1973

    Google Scholar 

  13. Simon, B., Høegh-Krohn, R.: J. Funct. Anal.9, 121–180 (1972)

    Google Scholar 

  14. Guerra, F.: Phys. Rev. Letters28, 1213–1215 (1972)

    Google Scholar 

  15. Guerra, F., Rosen, L., Simon, B.: Commun. math. Phys.27, 10–22 (1972)

    Google Scholar 

  16. Guerra, F., Rosen, L., Simon, B.: Commun. math. Phys.29, 233–247 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. Haag and A. S. Wightman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Høegh-Krohn, R. Relativistic quantum statistical mechanics in two-dimensional space-time. Commun.Math. Phys. 38, 195–224 (1974). https://doi.org/10.1007/BF01651542

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01651542

Keywords

Navigation