Skip to main content
Log in

Estimates of critical lengths and critical temperatures for classical and quantum lattice systems

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Local Ward identities are derived which lead to the mean-field upper bound for the critical temperature for certain multicomponent classical lattice systems (improving by a factor of two an estimate of Brascamp-Lieb). We develop a method for accurately estimating lattice Green's functionsI d yielding 0.3069<I 4<0.3111 and the global bounds (d−1/2)<I d <(d−1) for alld⩾4. The estimate forI d implies the existence of a critical length for classical lattice systems with fixed length spins. Forv-component spins with fixed lengthb on the lattice ℤd,v=1, 2, 3, 4, the critical temperature for spontaneous magnetization satisfies

$$\frac{{2Jb^2 }}{k}\frac{{d - 1}}{v}< T{}_c \leqslant \frac{{2Jb^2 }}{k}\frac{d}{v} for d \geqslant 4$$

ford4 Using GHS or generalized Griffiths' inequalities, we find that the upper bounds on the critical temperature extend to certain classical and quantum systems with unbounded spins. Absence of symmetry breakdown at high temperature for quantum lattice fields follows from bounding the energy density by a multiple ofkT. Path space techniques for finite degrees of freedom show that the high-temperature limit is classical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bricmont,Ann. Soc. Sc. Brux. 90:245 (1976).

    Google Scholar 

  2. J. Bricmont,Phys. Lett. 57A:411 (1976).

    Google Scholar 

  3. J. Bricmont, J. R. Fontaine, and L. Landau,Comm. Math. Phys. 56:281 (1977);

    Google Scholar 

  4. Comm. Math. Phys. 64:49 (1978).

  5. H. Brascamp and E. H. Lieb, inFunctional Integration and Its Applications, A. N. Arthurs, ed. (Clarendon Press, Oxford, 1975).

    Google Scholar 

  6. S. Coleman,Comm. Math. Phys. 31:259 (1973).

    Google Scholar 

  7. F. Dyson, E. Lieb, and B. Simon,J. Stat. Phys. 18:335 (1978).

    Google Scholar 

  8. F. Dunlop,Comm. Math. Phys. 49:247 (1976).

    Google Scholar 

  9. R. S. Ellis, J. L. Monroe, and C. M. Newman,Comm. Math. Phys. 46:167 (1976).

    Google Scholar 

  10. M. E. Fisher,Phys. Rev. 162:480 (1976).

    Google Scholar 

  11. J. Fröhlich,Acta Phys. Austriaca, Suppl. 15:133 (1976).

    Google Scholar 

  12. J. Fröhlich, B. Simon, and T. Spencer,Comm. Math. Phys. 50:79 (1976).

    Google Scholar 

  13. E. Gal-Ezer,Comm. Math. Phys. 44:191 (1975).

    Google Scholar 

  14. R. Griffiths, C. Hurst, and S. Sherman,J. Math. Phys. 11:790 (1970).

    Google Scholar 

  15. J. Ginibre,Comm. Math. Phys. 14:205 (1969).

    Google Scholar 

  16. J. Ginibre,Comm. Math. Phys. 16:310 (1970).

    Google Scholar 

  17. J. Ginibre, inStatistical Mechanics and Quantum Field Theory, De Witt and Stora, eds. (Gordon and Breach, New York, 1971).

    Google Scholar 

  18. R. B. Griffiths,Comm. Math. Phys. 6:121 (1967).

    Google Scholar 

  19. J. Glimm, A. Jaffe, and T. Spencer,Comm. Math. Phys. 45:203 (1975).

    Google Scholar 

  20. F. Guerra, L. Rosen, and B. Simon,Ann. Math. 101:111 (1975);

    Google Scholar 

  21. Ann. Inst. H. Poincaré XXY:231 (1976).

  22. J. C. Garrison, J. Wong, and H. L. Morrison,J. Math. Phys. 13:1735 (1972).

    Google Scholar 

  23. R. Hoegh-Krohn,Comm. Math. Phys. 38:195 (1974).

    Google Scholar 

  24. R. B. Israel,Comm. Math. Phys. 50:245 (1976).

    Google Scholar 

  25. T. Kato,Israel J. Math. 13:135 (1972).

    Google Scholar 

  26. A. Klein,J. Functional Analysis 27:277 (1978).

    Google Scholar 

  27. A. Klein and L. Landau,J. Fund. Anal. 20:44 (1975).

    Google Scholar 

  28. J. L. Lebowitz,Comm. Math. Phys. 35:87 (1974).

    Google Scholar 

  29. J. L. Lebowitz and A. Martin-Lof,Comm. Math. Phys. 25:276 (1972).

    Google Scholar 

  30. N. D. Mermin and H. Wagner,Phys. Rev. Lett. 17:1133 (1966).

    Google Scholar 

  31. E. Nelson, inPartial Differential Equations, D. Spencer, ed. (Symp. in Pure Math., Vol. 23; AMS Publications, 1973), p. 413.

  32. Y. Park,J. Math. Phys. 18:354 (1977).

    Google Scholar 

  33. P. Pfeuty,Ann. Phys. 57:79 (1970).

    Google Scholar 

  34. G. Roepstorff,Comm. Math. Phys. 46:253 (1976).

    Google Scholar 

  35. M. B. Ruskai,Comm. Math. Phys. 26:280 (1972).

    Google Scholar 

  36. T. D. Schultz, D. C. Mattis, and E. H. Lieb,Rev. Mod. Phys. 36:856 (1964).

    Google Scholar 

  37. B. Simon,J. Fund. Anal. 12:335 (1973).

    Google Scholar 

  38. B. Simon,The P(φ)2Euclidean (Quantum)Field Theory (Princeton University Press, 1974).

  39. B. Simon, New Rigorous Existence Theorems for Phase Transitions in Model Systems, preprint (1977).

  40. B. Simon and R. Griffiths,Comm. Math. Phys. 33:145 (1973).

    Google Scholar 

  41. G. Sylvester, Continuous Spin Ising Ferromagnets, Thesis, MIT, Cambridge, Mass. (1976).

    Google Scholar 

  42. G. N. Watson,Quart. J. Math. 10:266(1939).

    Google Scholar 

  43. J. Yeh,Stochastic Processes and the Wiener Integral (Dekker, 1973), Section 6.

  44. R. L. Dobrushin,Theory Prob. Appl. 13:197 (1968).

    Google Scholar 

  45. H. Kunz, Ch. Ed. Pfister, and P. A. Vuillermot,Phys. Lett. 54A:428 (1975);J. Phys. A 9:1673 (1976).

    Google Scholar 

  46. H. S. Sharatchandra,Phys. Lett. 77B:185 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Science Research Council.

Supported by Fundação de Amparo a Pesquisa de Estado de Säo Paulo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Driessler, W., Landau, L. & Perez, J.F. Estimates of critical lengths and critical temperatures for classical and quantum lattice systems. J Stat Phys 20, 123–162 (1979). https://doi.org/10.1007/BF01011509

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01011509

Key words

Navigation